

Presentation slide deck + speaker notes

Event URL: https://2018.pygotham.org/talks/keep-it-secret-keep-it-safe-preserving-anonymity-by-subverting-stylometry

Please cite this presentation as:

Davis, Robin Camille. Keep it secret, keep it safe! Preserving anonymity by subverting stylometry. (5 October 2018). Presented at PyGotham, Hotel Pennsylvania.

In this talk, we will...

- Learn what stylometry is
- Talk about stylometric obfuscation
- Look at the Scikit-learn Python library

About me

By day: Library science!

By night: Computational linguistics!

Research project: "Writing Against the Machine: Toward Stylometric Obfuscation," funded by PSC-CUNY

Programmer level: aspirationally intermediate

Before I talk about what stylometry is, let's rewind 55 years ago...

JOURNA STATIS	L OF THE AM TICAL ASSOC	ERICAN IATION	
Number 302	JUNE, 1963	Volume 58	
INFEREN A compara	ICE IN AN AUTHORSHIP PR	COBLEM ^{1.2} ods applied	
to the a	athorship of the disputed Federalis FREDERICK MOSTELLER Harvard University and for Advanced Study in the Behavioral S	el papers	
	AND DAVID L. WALLACE University of Chicago		Mostellar E & Wallace
This nation strong large s and to	study has four purposes: to provide a methods; to explore the problems prese y on Bayes' theorem when they are u cale; to solve the authorship question propose routine methods for solving ot	a comparison of discrimi- inted by techniques based sed in a data analysis of of <i>The Federalist</i> papers; ther authorship problems.	D. L. (1963). Inference in an Authorship Problem. Journal of the American Statistical Association, 58(302), 275–309.

This may be the most famous stylometry paper. This is Mosteller and Wallace's Bayesian analysis of the Federalist Papers. Famously, the Federalist Papers were penned anonymously under a pen name by Hamilton, Madison, and John Jay, and for most of the papers it was clear who wrote what, but there were 12 papers whose authorship was in dispute.

Rate/1000 words	Hamilton	\mathbf{M}_{adison}
0 (exactly)	·····	41
0+-1	1	7
1 -2	10	2
2 -3	11	
3 -4	11	
4 -5	10	
5 -6	3	
6 -7	1	
7 -8	1	
Totals	48	50

They did a very innovative statistical analysis of the text of the Federalist Papers. They modeled frequency distributions of the words in the text. Here, you see that Hamilton uses the word *upon* at a higher rate than Madison does, overall, looking at the papers that are known to be written by them.

To illustrate this, here's a typical Federalist paper by Hamilton and one by Madison. Hamilton is all-up-ons, as Strong Bad would say, and Madison tends not to use that word.

Here are 4 of the 12 disputed papers. Visually, you can see that upon isn't used that much.

TABLE 2.5. FUNCTION WORDS AND THEIR CODE NUMBERS FOR THE FEDERALIST STUDY

and the second second	State of the state							and an other states and the state of the sta	the second s
1 a 2 all 3 also	8 as 9 at 10 be	15 do 16 down 17 even	22 has 23 have 24 her	29 is 30 it 31 its	36 no 37 not 38 now	43 or 44 our 45 shall	50 than 51 that 52 the	57 this 58 to 59 up	64 when 65 which 66 who
4 an	11 been	18 every	25 his	32 may	39 of	46 should	53 their	60 upon	67 will
5 and	12 but	19 for	26 if	33 more	40 on	47 so	54 then	61 was	68 with
7 are	13 by 14 can	20 from 21 had	27 in 28 into	35 my	41 one 42 only	49 such	56 thing	63 what	70 your

TABLE 2.6. ADDITIONAL WORDS AND CODE NUMBERS FOR THE FEDERALIST STUDY TABLE 2.7. NEW WORDS FROM THE WORD INDEX STUDY TOGETHER WITH THEIR CODE NUMBERS

*73 although *81 consequently \$90 either *96 inaguage 104 mme *112 violence 112 odversaries 132 danger 144 large 155 provision + s 74 annong *82 considerable *90 enough (and in gr mest) 97 mest 105 second *112 violence 112 odversaries 132 danger 144 large 155 provision + s 75 another *83 considerable *90 enough (and in gr mest) 99 mest 105 second *112 violence 121 after 133 deide+s+ed+ing 144 large 155 provision + s 76 because *95 destruction *92 function 100 often 100 through 115 whether 122 adversaries 132 danger 144 large 155 provision + s 76 because *95 destruction *92 function 100 often 100 through 115 whether 123 adversa 135 during 144 large 150 second 155 second 165 provision + s 76 because *95 destruction *92 function 100 often 100 through 115 whether 123 heavys 135 during 144 large 150 because 160 though 78 both 86 did 100 often 100 through 116 whether 124 sep
--

"Upon" was only one of the 165 words that Mosteller and Wallace considered. And counterintuitively, they chose to use the most common words to ascertain authorship. Because it's the really common words, like *upon* and *about* and *necessary* and *always*, that can give away the author of an anonymous paper regardless of its topic. More specific words, like *Congress*, are too contextual and aren't useful for discrimination when it comes to authorship. Plus, we use these more common words pretty unconsciously -- Hamilton probably wasn't intentionally using the word "upon" a lot, that was just the way he wrote. In the end, the authors of this study found that there was a high likelihood that Madison wrote all 12 of the disputed papers. Importantly, they said this work supplements the work that historians do, rather than replacing it. Their paper laid out the statistical foundations of stylometry as we know it today.

Here's the definition that I've given to stylometry: the quantifiable measurement of an author's writing style. You could also call stylometry the statistical measurement of language.

Let's fast forward 55 years and see where we're at now.

How can we perform stylometric analysis with Python?

What you need:

- Corpus of texts
- Scikit-learn (pip install sklearn) ←an amazing machine learning library
- Optional: NLTK (pip install nltk)

Okay, cool history lesson, but this is a Python conference! Let's talk about Python. Python is awesome for textual analysis — it's quick and has lots of built-in libraries. To perform stylometric text analysis, you would need a corpus of texts (just a folder full of .txt files) and a machine learning library. I'll be focusing mainly on Scikit-learn today.

Scikit-learn was started as a Google Summer of Code project a decade ago, and since then it's become a very successful open-source code project. It's got great documentation! It's a very powerful library, and we're focusing on just one application: classification.

A very simple classification program might distinguish between spam emails and not-spam emails.

A slightly more complex classifier might be able to distinguish which texts were written by each author in a set. It's basing its guesses on samples it already has from each author.

Classification using machine learning

TL;DR: Categorizing documents (data) using a list of pre-chosen categories (labels) according to some feature, powered by statistics! Assume that the set of documents includes some by the real author.

- "Based on the appearance of words like 'business opportunity,' this email is classified as spam."
- "Based on sentence length and word frequency, this novel is classified as having been written by Charlotte Brontë."

So classification is basically categorization. You're categorizing documents (like emails and novels) using a list of pre-chosen labels (like Author A, Author B, or spam/not spam). You're categorizing these documents according to some features, like how often the author uses specific words, like how we saw with the Federalist Papers. So you might have an anonymous novel and you suspect one of 6 known authors wrote it. Your categories in this case would be those authors. Based on the features of sentence length and word frequency, you could classify a novel has having been by, say, Charlotte Brontë. This is done at scale using machine learning. Scikit-learn has several types of classifiers that take different approaches to these problems, which you can dive into yourself on their website if you're into stats!

So let's run through a small example. Say I've got writing by these 6 authors, plus I've got another document with an unknown author.

Features to use for text classification

- Word frequency ← super common: our choice today
- Word length
- Sentence length
- Punctuation frequency
- Emoji use
- Typo frequency
- Etc.

First, let's decide what should we base our classifier's decisions on. Let's stick with word frequency, which the Federalist Paper study used, too. You could also use...

The term frequency (Bag of Words) approach

	the	to	and	of
<pre>bronte_shirley.txt</pre>	0.5149526	0.3376386	0.3728635	0.2951648
<pre>bronte_villette.txt</pre>	0.533057	0.3051213	0.4068919	0.3092505
burns_letters.txt	0.5434705	0.329901	0.3128745	0.4436735

- Each feature is the frequency of a word
- Doesn't consider topic, word order, etc.
- Pretty dumb
- Works well enough for me

For my examples today, I'm only focusing on term frequency, which is sometime called the Bag of Words approach. We'll consider the top 1000 most common words. So since we're only considering some words, you'll notice that we don't care at all about word order, or syntax, or topic — this is definitely a dumb approach. But you know what, it works well enough for me.

	the	to	and	of
<pre>bronte_shirley.txt</pre>	9093	5962	6584	5212
<pre>bronte_villette.txt</pre>	8391	4803	6405	4868
<pre>burns_letters.txt</pre>	5522	3352	3179	4508
<pre>burns_poems.txt</pre>	5903	2117	3192	1238
<pre>poe_cask.txt</pre>	168	50	61	76
	the	to	and	of
<pre>bronte_shirley.txt</pre>	0.5149526	0.3376386	0.3728635	0.295164
<pre>bronte_villette.txt</pre>	0.533057	0.3051213	0.4068919	0.309250
<pre>burns_letters.txt</pre>	0.5434705	0.329901	0.3128745	0.443673
burns_poems.txt	0.6979053	0.2502906	0.3773867	0.146367
and the second	0 7107000	0 0101400	0 350014	0 222450

Quick note, word frequency or term frequency is different than a plain old word count. Since the documents we're analyzing might be different lengths, it makes sense to use frequency than just counting up how often 'the' is used, so we can actually compare documents to each other regardless of length. (Open up IDLE)

Training a classifier, screenshot 1

```
from sklearn.naive_bayes import GaussianNB
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.externals import joblib
# Set up document lists
# The docs whose authorship we know
traindocs = []
traindocsfiles= ['bronte_shirley.txt', 'bronte_villette.txt',
                    'burns_letters.txt', 'burns_poems.txt',
                    'poe_cask.txt', 'poe_masque.txt','poe_raven.txt','poe_usher.txt',
                    'rossetti_goblin.txt', 'rossetti_poems.txt',
                    'shelley_last-man.txt','shelley_mathilda.txt','shelley_tales.txt']
for doc in traindocsfiles:
    with open('authors/' + doc, 'rb') as fulltext:
    fulltext = fulltext.read()
    traindocs.append(fulltext)
# Document labels, aka who wrote them
targets = ['bronte', 'bronte',
              'burns', 'burns',
              'poe', 'poe', 'poe',
              'rossetti', 'rossetti',
              'shelley', 'shelley']
```

Screenshot or gif of code running

Training a classifier, screenshot 2

```
# Creates word-count array for a given text.
# Use only vocabulary of top 1,000 most frequent words
with open('top1000.txt', 'rb') as vocdoc:
    voc = [w[:-1] for w in vocdoc.readlines()]
def wordfreq(docs):
    '''wordcount(documentList) -> converts collection of documents to term frequency matrix'''
    tf = TfidfVectorizer(vocabulary=voc.use_idf=False)
    alltexts = []
    for doc in docs:
        alltexts.append(doc)
    tfarray = tf.fit_transform(alltexts)
    return tfarray
# Set up term frequency arrays for training document sets
traintf = wordfreq(traindocs).toarray()
```

Screenshot or gif of code running

Training a classifier, screenshot 3

```
# Set up classifier
gnb = GaussianNB()
preds = gnb.fit(traintf, targets).predict(traintf)
scoretrain = "%.3f" % gnb.score(traintf,targets)
print("Classifier accuracy on training document set:", scoretrain)
```

>>>
Classifier accuracy on training document set: 1.000

Screenshot or gif of code running

Using the trained classifier on anonymous.txt

```
classif = joblib.dump(gnb,'journalclassifier') #save classifier
```

```
# The docs whose authorship we don't know
# (or do but want to use to test the classifier)
testdocs = []
testdocsfiles = ['anonymous.txt']
for doc in testdocsfiles:
   with open('authors/' + doc, 'rb') as fulltext:
        fulltext = fulltext.read()
        testdocs.append(fulltext)
# Set up term frequency arrays for anonymous doc(s)
anontf = wordfreq(testdocs).toarray()
# Use trained classifier on new text, return prediction
gnbtest = joblib.load(classif[0]) #reuse saved classifier
predicttest = gnbtest.predict(anontf)
print("Predicted author of anonymous document:", predicttest[0])
>>>
Predicted author of anonymous document: shelley
```

Hooray! Let's take a look at anonymous.txt. Okay so we know it's Frankenstein, it's definitely Mary Shelley, although, fun fact, she first published it anonymously.

(Fun fact: Mary Shelley did actually publish Frankenstein anonymously! But she dedicated the novel to her father, so people didn't need stylometry back then to figure out it was her.)

So with Scikit-learn as one example of easy to use machine learning library, we can see that anyone with programming chops can run an authorship attribution study, as long as they have a big enough writing sample. Let's talk about privacy and anonymity again. If you write on the web — if you use Twitter, if you blog, if you publish articles — you're building your own writing corpus. So there is a slim chance that if you ever attempted to write something anonymously, your own writing elsewhere could give you away. I could compare your published writing, the articles with your name on it, to the blog post you thought was anonymous, and use a classifier to predict that you're the author. And it's easy to get an 80%+ accuracy rate with these classifiers.

Which is kind of scary. Is there any such thing as anonymous writing anymore? Can you ever write anonymously?

FBI Criminal Justice Information Systems

From "Technology Assessment for the State of the Art Biometrics Excellence Roadmap (SABER)"

As non-handwritten communications become more prevalent, such as blogging, text messaging and emails, there is a growing need to identify writers not by their written script, but by analysis of the typed content. Currently, there are some studies in the area of writer's colloquial analysis that may lead to the emerging technology of writer identification in the "blogosphere." These technologies could possibly create a profile and even identify a writer's identity. Similar to colloquial speech analysis, studies have shown that bloggers and chatters use a colloquial form of writing instead of a standard form when blogging, chatting, or text messaging. Recommend investment in scientifically-based text-independent e-mail and blog writer identification and document linking.

Wayman, J., Orlans, N., Hu, Q., Goodman, F., Ulrich, A., & Valencia, V. (2009). Technology Assessment for the State of the Art Biometrics Excellence Roadmap: Face, Iris, Ear, Voice, and Handwriter Recognition. Retrieved from https://www.fbi.gov/...

In fact, stylometric analysis is being used to unmask authors in a variety of ways, including by law enforcement. Here, what's fascinating with this snippet from an FBI report is that the FBI sees a person's unique, quantifiable writing style as a **biometric**. This recommendation for an "emerging technology of writer identification" was written alongside recommendations for voice and handwriting recognition.

Defensive uses of stylometry

- Blog/forum/social media author identification
- Active authorization
- Plagiarism software

So by using writing style as a behavioral biometric identifier, the FBI is positing stylometry as a defense — a weapon to use against terrorist groups who recruit or plan things online, for instance. Side note, if you're thinking about stuff like ransom notes and other writing that comes up in a court of law, forensic linguists use other very different methods that are focused on different considerations, although stylometry may be one tool on their toolbelt.

Other research focuses on "active authorization," which guards against fraud and hacking. If a user's writing style deviates too far from their normal profile as they're writing emails and Word docs, the active authorization software flags the user as a possible hacker.

Another defensive use for stylometry is closer to home for me — catching students who cheat by hiring someone else to write their essay. Last year, a web app called Emma launched and publicized a use case for teachers, where they could upload their students' papers and compare them to previous written essays. I'm not sure how well it works, but they have identified a use case that educators do worry about.

Anonymous writing scenarios

- Activist working in oppressive conditions
- Novelist writing a different kind of novel
- Anonymous op-ed
- Whistleblower reporting wrongdoing

Is this a privacy concern?

Is there a way to outwit an authorship attribution scenario?

The previous 3 examples have all been defensive uses of stylometry — to catch terrorists, prevent fraud, and find cheaters — but stylometry could also be used to uncover people who write something anonymously for less nefarious reasons. For digital humanists, this is exciting because we can now dig up poems and novels written anonymously and make more educated guesses as to their authorship. JK Rowling was outed pretty quickly as the author of A Cuckoo's Calling, which she wrote under a pen name because she was nervous about publishing a non-Harry Potter book. Part of the reason she was unmasked was through a stylometric analysis by Patrick Juola.

This isn't limited to literature, however — other writers may also have a justified reason for remaining anonymous. Whistleblowers who send emails about company fraud, for instance, or op-ed writers in the New York Times who think they're part of the resistance, and so on. I don't know who that op-ed author was, but stylometry could potentially be used to uncover their identity.

Or say you're blowing the whistle on some kind of wrongdoing you've witnessed, and you want to send an email, but you're worried for your job or your safety. You send the email anonymously — you do all the right things, you create a new email account, use a public access computer at your local library, you mask your location, you use other privacy geek strategies. But if someone guesses that you could be involved, you could end up in a pool of suspects, and your known writing samples could be compared to your anonymous email. Even when there's no other evidence linking you to that anonymous email, your own words could give you away.

My thought is - we use stylometric methods for authorship attribution all the

time. Can we use those methods for the opposite purpose — anonymization? Can we use what we know about stylometry to outwit an authorship attribution scenario?

Strategy 1: Write like someone else

Imitate someone else's distinctive writing style

- Pros: Can actually work (see Brennan, Afroz, & Greenstadt 2012)
- Cons: Lots of time & effort; start writing from scratch

See: Brennan, M., Afroz, S., & Greenstadt, R. (2012). Adversarial Stylometry: Circumventing Authorship Recognition to Preserve Privacy and Anonymity. ACM Transactions on Information and System Security, 15(3). Retrieved from https://www.cs.drexel.edu/~sa499/papers/adversarial_stylometry.pdf

One way to circumvent authorship attribution through stylometry is to imitate someone else's style. The study on the screen asked their participants to write a passage in their own voice, and then to rewrite it imitating the author Cormac McCarthy. They showed this can actually work — the imitation writing could not be classified correctly. However, this is a lot of work, and if you already have a message you want to anonymize, you'd have to rewrite the whole thing to use this method.

Strategy 2: Put your writing through a translator & back

- Pro: it might work! ... Depending on which language(s) you use
- Con: it might become nonsense!
 - English Keep it secret! Keep it safe!
 - → Hmong Cia nws zais cia! Khaws kom zoo!
 - → Spanish ¡Guarda su secreto! ¡Sigue así!
 - → Icelandic Haltu leynum þínum! Haltu því upp!
 - → English Keep your secret! Stop it!

See: Caliskan, A., & Greenstadt, R. (2012). Translate Once, Translate Twice, Translate Thrice and Attribute: Identifying Authors and Machine Translation Tools in Translated Text. In 2012 IEEE Sixth International Conference on Semantic Computing (ICSC) (pp. 121–125). http://doi.org/10.1109/ICSC.2012.46

What if you didn't have to rewrite it? Several research papers have been written on the idea of using machine translation to hide your writing style, by translating something from your language into one or more other languages and back to your language. The idea is that the translate app will keep your general meaning but use its own dictionary to choose different words. This might work, but it might not be sustainable since machine translators keep improving. So eventually (or even now) the writing style could actually be preserved. On the other hand, we've all had the experience of using Google translate and getting complete nonsense back, or worse, changing the meaning of your text in a critical way. So this is a risky move.

Strategy 3: Stylometric obfuscation

- Use stylometry to identify your unconscious stylistic markers
- Lessen the frequency of these markers
- Then test in an authorship attribution scenario

"Obfuscation attacks on stylometric analysis involve writing in such a way that there is no distinctive style."

-Obfuscation: A User's Guide (Brunton & Nissenbaum, 2015)

See also: McDonald, A. W. E., Afroz, S., Caliskan, A., Stolerman, A., & Greenstadt, R. (2012). Use Fewer Instances of the Letter "i": Toward Writing Style Anonymization. Privacy Enhancing Technologies: 12th International Symposium, PETS 2012, LNCS 7384. Retrieved from <u>https://www.cs.drexel.edu/~sa499/papers/anonymouth.pdf</u>

Lastly, and this is the one we'll spend the rest of the time focusing on, there is stylometric obfuscation. The goal is to confuse the authorship attribution software by using its methods against it. So you might consider typical stylometry features — like word frequency, sentence length, and so on — and use stylometry software to identify these in your own writing. Once you know your stylistic markers, you can try to avoid using them, or revise a message you already have to take them out of your writing. And then, this is the important bit, you can run your own writing though an authorship attribution scenario. The goal is to have "no distinctive style." To write blandly. I'll show you how this could play out.

I am currently working on a Python project called Nondescript, which is a web-based tool that helps you anonymize your text in a simulated de-anonymization scenario. Essentially, it's a human-directed anonymizing helper that puts your writing through a new authorship attribution scenario every time you run it.

(I should also say that there's another project out of Drexel called Anonymouth that has the same aim, but it's got a different interface and is not written in Python. It's still cool though, you should look it up.)

Blog Authorship Corpus

Before I demo the software, let me touch on what it's comparing the user's writing to. To run an authorship attribution scenario, you have to compare it to something. I am using the Blog Authorship Corpus, which dates from the year 2004. It contains 19,000+ blogs crawled from the web. These include personal blogs written by teenagers (as you might expect), but also travel blogs, religious blogs, IT blogs, and many more, written by authors with a wide range of ages, occupations, and writing styles.

Side note, there are some issues with using blogs from 2004. Neologisms coined since then (like selfie or vape) would not be included. And some words appear more often than they do now. E.g., "George" appears about as often as the word "Thursday" because so many people were blogging about current events (former Pres. George Bush).

Top 1000 words

a the i to and of in that my is it for was you on but with have so this be we at me not as he all are just like they about or what if from out up had one when get will do she can some by his her your an there then really know would more who think go am has been no got were how time because going people good our back now only see their want even went after much which into him other love last them very could than still over make new its little did day never first things way being something say feel off too well where any should take also need us around right here down most work those said two why these made thing before come life always while many few today another next since find through long look home ever maybe thought every great getting night pretty may came tell actually im let someone sure better lot same put best told doing give until oh school read myself bad big nothing such old having own does keep took everyone might u left hope found guess whole friends world probably anything started talk trying away wanted call years try end called quite each nice without must start everything days though saw enough least once place looking bit part house makes guy man god again person kind year dont believe gonna both happy use hard help used fun done week blog decided post friend able hate almost remember seems stuff n anyone show three play mean finally talking live times feeling already thinking felt real watch movie making write else during name head asked stop different leave yet wish between working mom mind hours past coming morning ask couple point far miss high seen girl car fact comes half family care guys reading room free money hear knew rather run job later game change cool book gave looked lost taking sometimes set music cause says rest against full sleep heart

To be even more certain that Nondescript examines writing *style* and not *topic* when performing authorship attribution, I only considered the top 1,000 words by frequency in the corpus, the top two hundred or so as seen here.

Here's how it works. The user submits a writing sample and a message. Nondescript chooses 3 to 7 random authors from the background corpus to compare the documents to. (I'm doing 3 today.) It trains a Naive Bayes classifier on the writing sample and two documents each from the 3 authors. (Why am I using a small pool of authors? Mainly because the more authors there are, the longer it takes to run, so for this example, we're just doing 3. But we're also doing 3 because this is a simulation of an authorship attribution scenario where the user's writing is being compared to a small group of other suspected authors. In the real world, authorship attribution studies can include as few as 1 other author or thousands.)

Then Nondescript uses the trained classifier to predict who wrote the submitted message. The user doesn't see any of the other random texts, by the way — it's all happening in the background, and the idea is that if you really were in an authorship attribution scenario, you wouldn't know who you'd be compared to anyway. You just want to know, in this scenario, was it attributed to me or not?

Co	npared to 7 random au	Re thors' documents in our bac Message successfully an Overall (testing) classi	sults kground corpus, was your ma onymized for this classif ifier score: 75.0 out of 10	essage still classified as yours? ier. o
Inalysis of your writi los annitarity score: a. Similarity between this Your message's word ler Your message's sentence	ng samyle and message . High aimlarity scove: 1.0. nessage and original writing sam gth is 0.91x your average length is 1.20x your average	çik: 0.926	Analysis of your overall writi Your overall word length is 1.00 Your overall sentence length is 1.	ing style e overyone else's average .37% everyone else's average
		Iry a	gain?	
Revise manually	I'm feeling fortuitous	Message as submitted		
Revise manually Suggestions	I'm feeling fortuitous for synonyms provided.	Message as submitted		

The output page will tell the user whether or not their message was attributed to them (non anonymized) or not (anonymized). More information about the user's writing is also presented — simple analysis of word/sentence length and unusually frequent words. This output screen also gives the user a chance to revise their message before running another authorship attribution scenario.

At the bottom of the page, not only can the user work on the message they submitted, but I also included a somewhat helpful feature that replaces some words in your document with their synonyms. It's really dumb synonym replacement, so sometimes it's helpful and sometimes it's accidentally funny. This bit uses NLTK, which I'll explain in a sec.

You may be thinking, it's a little odd that Nondescript is so self-contained, that I chose the classifier and I'm trying to confuse it. That's a legitimate point, but the classifier is really a simple implementation of a Naive Bayes classifier using Scikit-Learn. There's nothing really special about it, and you can use the same classifier with all kinds of writing for all kinds of purposes, not just the one we're using here. Still, I sometimes call this an educational tool — it's not going to guarantee anonymity, but it is going to make you think about your writing style and ways you could disguise it if you have to. LIVE DEMO

Synonym replacer: uses WordNet via NLTK, Natural Language Tool Kit

which includes access to WordNet, a really amazing programmatic thesaurus

How I built it

- Scikit-Learn classification
- Flask (framework) web interface
- jQuery UI interactivity
- NLTK
 - WordNet synonym replacement
- WordFilter (library) blacklist of bad words
- Blog Authorship Corpus, 2004 background corpus

Nondescript is not online (yet!) but the code is on GitHub @robincamille.

Okay, here's what I used to build the web app. We talked about Scikit-learn, and I'm sure some of you are familiar with Flask, which basically lets you connect your Python scripts to a web interface. I'm using a simple HTML web form, but I snazzed it up with some jQuery. For the synonym replacer, I used NLTK, the Natural Language Toolkit. I also used the WordFilter library because sometimes the synonym replacer came up with really inventive synonyms for swear words, which was amusing but ultimately inappropriate.

string.decode	nitk reverse lemma	sklearn classifier predict	activatore	synonym
0xa9	No module named	operands could not be	detect word ending python	python csv
0xa9 utf8 cant decode	django.core.management	broadcast together with	library	python defaultdict
authorship classifier open	numpy operands could not be	shapes	detect word tense python	python dot array
source python	broadcast together with	sklearn classifier unkknown	library	python for every file in
calculate term frequency	shapes	targets	dreamhost deploy app flask	directory
python	nympy import csy into array	sklearn csy to array	error key does not contain a	python function doctstring
can't multiply sequence by	on a pip -python	sklearn gaussian cassifier	section	example
non-int of type 'float'	pep 8 arguments	sklearn joblib	failed to push some refs to	python function example
cant paste into idle	pip - python	sklearn k means	failed to push some refs to files	python function style
cosine document similarity	print list to file	sklearn naive bayes confidence	too big	python function style default
cosine document similarity	pull back commit without	sklearn naive bayes decision	fh = iter(open(fname, 'U'))	python ignore utf8 error
python	losing changes	score	flask css	python list formatting tabs
cosine similarity python	python all	sklearn naive bayes score for	flask multipage form	string length
countyectorizer	python average	each sample	flask radio button form	python median
dedupe python list	python classify	sklearn smoothing	flask text formatting	python open file with readline
default ovthon libraries	python code replace with	sklearn sym decision function	flask tutorial	python quick dedupe list
defaultdict	synonym	sklearn tfidfvectorizer	flask url template	python guit paste
detect word ending python	nython csy	sklearn used trained classifier	format string python	python random number
library	nython dr fa di di at	1-6-1-	frandist	python read in file as floats
detect word tense outhon	python di		an naive bayes sklearn	python set default for variable
library	author to Things Goog	led while making Nonde	SCRIDE in out changes not	python set default for variable
dreamhost deploy ann flask	director	iee maining remain	ed for commit	in function
error key does not contain a	nython function doctstring	on unknown document	git force pull	python split text into even
section	example	sklearn web ann	how many variables python	chunks
failed to nush some refs to	nython function example	sort dict alphabetically	function is too many	python textwrapper avoid
failed to push some refs to files	python function style	sort dictionary by value	html form go to new page	splitting words
too hin	nython function style default	stackoverflow command line	html two names	python try except
fb = iter(open(fname, 'll'))	nython ignore utf8 error	find files of certain size	instance methods ovthon	python while two condistions
flack res	nython list formatting tabs	string format multiple	itertools chunked list	python with readlines
flack multinage form	string length	arguments)	kmeans predict document	quit very
flask radio button form	nuthon median	string formatting	list all files over a certain size	randomize list
flack text formatting	nython onen file with readlines	string formatting integer	linux	remove from ait oush without
flack tutorial	python quick dedune list	string formatting string float	list files in directory over	changing local data
flask uri template	python quit paste	integer	certain size	run shell script terminal
format string outbon	python quit paste	term frequency outbon	list pop	scikit learn
freedict	python random number	text form with flack	list reverse sort ovthon	scikit learn classifier f score
requist	python read in the as rioats	text form with hask	ls l	segmentation fault 11 python
gaussian naive bayes skiearn	python set default for variable	ti skiearn	machine learning sklearn	sklearn
gn crean out changes not	python set default for variable	fidf upstorizer	more itertools	sklearn cite
staged for commit	mittee colit text into even	fidf vectorizer smooth	multiword expression synonym	sklearn classifier operands
how many variables outhon	shunks	too many variables without	nython	could not be broadcast
function is too many	nuthen texturnment would	function	nin similarity score document	together
html form on to new prop	python textwrapper avoid	Tune Front all arguments	nin word ending nython library	and a street
html form go to new page	splitting words	rypectror, not all arguments	mp more energy pychon norary	
html two names	ovthon try except	converted during string		

I also used Google! A lot! As I built the first version of Nondescript, I went back to look at all the things I Googled while I was making it. So anytime I felt like a badass Pythonista, I could bring myself back down to earth by seeing that I had to look up how to find an average with Python, after 4 years of coding.

Preliminary results

Of the 200 times an original message was classified, the classifier was correct 99 times (49.5%). Of the 200 times a synonymreplacement message was classified, the classifier was correct 70 times (35.0%).

Though the classifier accuracy for the original messages was low compared to the overall classifier score (but still substantially better than random chance), the synonymreplacement message was misclassified significantly more often compared to the original message.

Nondescript is a human-powered system. I'm currently running a user study to see how it can help real humans. But since I don't have the user study results yet, I tested what I *could* test: whether the synonym-replacement feature (the "I'm feeling fortuitous" tab) did anything. So I ran Nondescript on the writing for 40 authors in the Blog Corpus that were set aside. The synonym-replacement message was misclassified significantly more often compared to the original message. What this doesn't tell you, however, is whether the *meaning* is preserved in the synonym-replacement message, or whether it's human-readable, or how easy it is to use Nondescript. So that's why I'm running the user study.

Conclusions

- Stylometry can be used in authorship attribution scenarios
- It may be possible to outwit a stylometric analysis by running your own authorship attribution simulations to revise your message

Your to-do list:

- Try Scikit-learn
- Consider your own writing habits: how would you try writing something anonymously?

Thank you!

Robin Camille Davis

Library, John Jay College of Criminal Justice (CUNY)

@robincamille on Twitter & GitHub

Further reading

Brunton, F., & Nissenbaum, H. (2016). Obfuscation: a user's guide for privacy and protest. Cambridge, MA: MIT Press.

Caliskan, A., & Greenstadt, R. (2012). Translate Once, Translate Twice, Translate Thrice and Attribute: Identifying Authors and Machine Translation Tools in Translated Text. In 2012 IEEE Sixth International Conference on Semantic Computing (ICSC) (pp. 121–125). http://doi.org/10.1109/ICSC.2012.46

Brennan, M., Afroz, S., & Greenstadt, R. (2012). Adversarial Stylometry: Circumventing Authorship Recognition to Preserve Privacy and Anonymity. ACM Transactions on Information and System Security, 15(3). Retrieved from https://www.cs.drexel.edu/~sa499/papers/adversarial_stylometry.pdf

Fridman, L., Stolerman, A., Acharya, S., Brennan, P., Juola, P., Greenstadt, R., & Kam, M. (2015). Multi-modal decision fusion for continuous authentication. Computers & Electrical Engineering, 41, 142–156. https://doi.org/10.1016/j.compeleceng.2014.10.018

McDonald, A. W. E., Afroz, S., Caliskan, A., Stolerman, A., & Greenstadt, R. (2012). Use Fewer Instances of the Letter "i": Toward Writing Style Anonymization. Privacy Enhancing Technologies: 12th International Symposium, PETS 2012, LNCS 7384. Retrieved from https://www.cs.drexel.edu/~sa499/papers/anonymouth.pdf

