
Presentation slide deck + speaker notes

Event URL: https://2018.pygotham.org/talks/keep-it-secret-keep-it-safe-
preserving-anonymity-by-subverting-stylometry

Please cite this presentation as:
Davis, Robin Camille. Keep it secret, keep it safe! Preserving anonymity
by subverting stylometry. (5 October 2018). Presented at PyGotham, Hotel
Pennsylvania.

https://2018.pygotham.org/talks/keep-it-secret-keep-it-safe-preserving-anonymity-by-subverting-stylometry/

In this talk, we will. ..

• Learn what stylometry is
• Talk about stylometric obfuscation
• Look at the Scikit-learn Python library

About me

By day: Library science!

By night: Computational linguistics!

Research project: "Writing Against the Machine : Toward Stylometric
Obfuscation," funded by PSC-CUNY

Programmer level: aspirationally intermediate

Before I talk about what stylometry is, let’s rewind 55 years ago…

This may be the most famous stylometry paper. This is Mosteller and Wallace’s
Bayesian analysis of the Federalist Papers. Famously, the Federalist Papers were
penned anonymously under a pen name by Hamilton, Madison, and John Jay, and for
most of the papers it was clear who wrote what, but there were 12 papers whose
authorship was in dispute.

L OF TH
TI L

N lllW Sb! J :XE, Ul63 olt11M 68

1. - RE. nrr rnonL , f•·•
corupnmtiv ·tu<l.y of discrimination methods ppli
to th uthor8li ip of e diBput •d Federali t papers

01'14

Cr:n!u for Adoantt<i &udv i11 tlie DLluurioral ~t•

A~D

Thi■ atudy bu four purpoer: : to provid a comparl50n o! duscrimi•
nation method ; to :cplore ihe proble pre1ented by te bn.iqu b
t.roogly ou Ba ' Lh m when th y 111Cd in a da AnAly • o!

largo le; to tolvo t.hc tu1thoNJhip qu tion of The Ptduoli pape ;
and to p OPo routin m lh for lvlng otb r author.hip probl ms.

StalistJcaJ AssOCJa''On
5 302) 275-309

They did a very innovative statistical analysis of the text of the Federalist Papers.
They modeled frequency distributions of the words in the text. Here, you see that
Hamilton uses the word upon at a higher rate than Madison does, overall, looking at
the papers that are known to be written by them.

CY DISTRIBUTIO FOR upon

Hamilton Madison

0 (e. ac ly) 41
o+ - 1 1 7
1 -2 1 2
2 - 3 11
3 - 11
4 -5 10
5 -6 3
6 - 7 1
7 - 1

To ala 4 50

(out of Hamilton 's 48 known papers and Madison's 50 known papers)

To illustrate this, here’s a typical Federalist paper by Hamilton and one by Madison.
Hamilton is all-up-ons, as Strong Bad would say, and Madison tends not to use that
word.

Paper #34 by Hamilton: 10 upons Paper #39 by Madison: 0 upons

Here are 4 of the 12 disputed papers. Visually, you can see that upon isn’t used that
much.

A sampling of the papers that may have
been written by Hamilton or Madison

“Upon” was only one of the 165 words that Mosteller and Wallace considered. And
counterintuitively, they chose to use the most common words to ascertain authorship.
Because it’s the really common words, like upon and about and necessary and
always, that can give away the author of an anonymous paper regardless of its topic.
More specific words, like Congress, are too contextual and aren’t useful for
discrimination when it comes to authorship. Plus, we use these more common words
pretty unconsciously -- Hamilton probably wasn’t intentionally using the word “upon” a
lot, that was just the way he wrote. In the end, the authors of this study found that
there was a high likelihood that Madison wrote all 12 of the disputed papers.
Importantly, they said this work supplements the work that historians do, rather than
replacing it. Their paper laid out the statistical foundations of stylometry as we know it
today.

TABLE 2.5. F

1 a a
2 u 9 at
3 also 10 b
4 an 11 been
6 an d 12 but
6 any 13 by 20 from
7 are 14 can 21 had

hav
h r

25 hia
2 il
27 in
28 into

' FE

is
i
its

32 may
33 mor
3 must
35 my

•11 fl(pl'
• 111 ... ,. .,..
• IU 11.-. 11~-­
• 11..&. ... ,

D T H IR CO A
•RALi T TU

no 43 or 50 than
not 44 our 61 that
now 46 Bhnll 62 b

46 hould 63 th ir
47 0 M then

41 on 4 me M tber
42 only 40 such 66 thin

BER S

6 when
66 hioh

up 66 ho
upon 67 will

61 w 68 with
62 were 6 would
68 wb.At 70 your

TABLE 2.7. E on FRO.I TllE WORD J:,JD STUDY

,., . .,,_
lN IN/
lffiNlllc I-I ..,..

TOOETl:IER \ JTJ:I erun

+•

Here’s the definition that I’ve given to stylometry: the quantifiable measurement of an
author’s writing style. You could also call stylometry the statistical measurement of
language.

Stylometry

Quantifiable measurement of an author's writing style

Let’s fast forward 55 years and see where we’re at now.

Okay, cool history lesson, but this is a Python conference! Let’s talk about Python.
Python is awesome for textual analysis — it’s quick and has lots of built-in libraries.
To perform stylometric text analysis, you would need a corpus of texts (just a folder
full of .txt files) and a machine learning library. I’ll be focusing mainly on Scikit-learn
today.

How can we perform stylometric analysis
with Python?

What you need:

• Corpus of texts
• Scikit-learn (pip install sklearn) ~an amazing machine learning library
• Optional : NL TK (pip install nltk)

Scikit-learn was started as a Google Summer of Code project a decade ago, and
since then it’s become a very successful open-source code project. It’s got great
documentation! It’s a very powerful library, and we’re focusing on just one application:
classification.

Cla lflcation

longol IQ

Af>pllcatlonl Spam o.!ecbOn, hligl ~
nruon.
"'9or1 ,_... ,

Dimensionality r ductlon

Rodudng ... -- "',_ --- IQ
cooeld«

Awflcatlono · Vil<tu.r,lllal , ~.
CIMCy
Algotl ~ -

Regres ion

Pl9dic:lt,g a aonlnlllu9-valued altrbuta ...,.

- enot,j«t.
At>pllcatlona: Drug,--. pn0IL
Algorflhm . SVR. U-, •-

Modal selection

111'11...:I~

Goel lr,p""9CI 10CUtaq, paranetar bin-
Ing

Modiae : gt1cl -·
na, .

Clustering

~ "' lllnlar olJjacto Int,:, -
Preprcx:e sing

~-and '1Cln!llliullon

Af>pllcaUon Tr~ rpii -
lorUM -IN"""'!I ~

ModulN ~

A very simple classification program might distinguish between spam emails and not-
spam emails.

A slightly more complex classifier might be able to distinguish which texts were
written by each author in a set. It’s basing its guesses on samples it already has from
each author.

~
. •

Chnstma Rossetti

l I • •

,. ,,

Robert Burns Samuel Taylor Coleridge

So classification is basically categorization. You’re categorizing documents (like
emails and novels) using a list of pre-chosen labels (like Author A, Author B, or
spam/not spam). You’re categorizing these documents according to some features,
like how often the author uses specific words, like how we saw with the Federalist
Papers. So you might have an anonymous novel and you suspect one of 6 known
authors wrote it. Your categories in this case would be those authors. Based on the
features of sentence length and word frequency, you could classify a novel has
having been by, say, Charlotte Brontë. This is done at scale using machine learning.
Scikit-learn has several types of classifiers that take different approaches to these
problems, which you can dive into yourself on their website if you’re into stats!

Classification using machine learning

TL;DR: Categorizing documents (data) using a list of pre-chosen categories (labels)
according to some feature, powered by statistics! Assume that the set of documents
includes some by the real author .

• "Based on the appearance of words like 'business opportunity,' this email is
classified as spam ."

• "Based on sentence length and word frequency, this novel is classified as having
been written by Charlotte Bronte ."

So let’s run through a small example. Say I’ve got writing by these 6 authors, plus I’ve
got another document with an unknown author.

First, let’s decide what should we base our classifier’s decisions on. Let’s stick with
word frequency, which the Federalist Paper study used, too. You could also use…

Features to use for text classification

• Word frequency- super common : our choice today
• Word length
• Sentence length

• Punctuation frequency

• Emoji use
• Typo frequency

• Etc.

For my examples today, I’m only focusing on term frequency, which is sometime
called the Bag of Words approach. We’ll consider the top 1000 most common words.
So since we’re only considering some words, you’ll notice that we don’t care at all
about word order, or syntax, or topic — this is definitely a dumb approach. But you
know what, it works well enough for me.

The term frequency (Bag of Words) approach
the to and of

bronte _ shirley.txt 0.5149526 0.3376386 0.3728635 0.2951648
bronte _villette.txt 0.533057 0.3051213 0.4068919 0.3092505
burns letters.txt 0.5434705 0.329901 0.3128745 0.4436735

• Each feature is the frequency of a word
• Doesn't consider topic, word order, etc.

• Pretty dumb
• Works well enough for me

Quick note, word frequency or term frequency is different than a plain old word count.
Since the documents we’re analyzing might be different lengths, it makes sense to
use frequency than just counting up how often ‘the’ is used, so we can actually
compare documents to each other regardless of length. (Open up IDLE)

Word count vs. word frequency
..... the to and of C:
::::,
0 bronte_shirley.txt 9093 5962 6584 5212

()

bronte villette.txt 8391 4803 6405 4868
burns letters.txt 5522 3352 3179 4508
burns_poems.txt 5903 2117 3192 1238
poe_cask.txt 168 50 61 76

>, the to and of C)
C: bronte_shirley.txt 0.5149526 0.3376386 0.3728635 0.2951648 Q)
::::,
cr bronte villette.txt 0.533057 0.3051213 0.4068919 0.3092505 Q)
LL burns letters.txt 0.5434705 0.329901 0.3128745 0.4436735

burns_poems.txt 0.6979053 0.2502906 0.3773867 0.1463674
poe_cask.txt 0.7127993 0.2121426 0.258814 0.3224568

Screenshot or gif of code running

Training a classifier, screenshot 1
fr sklearn .na i ve_bayes , r Gauss i an B
fr sklearn . feature extraction . text i o TfidfVectorizer

r sklearn .externals 1 jobl i b

Se up docu ent l i s s
The doc hose au horsh1p we now
tra i ndocs "' ()
tra i ndocs 1\ es= (' bronte_s 1r l ey . x ' , ' bronte_v i llette . txt ,

' burns letters . x ' . ' burns po ms. xt ' .
' poe_cask . txt ' , 'poe _ asque ~txt ' , ' poe_raven . tx ' . ' poe_us er . tx ' ,
' rosse 1_gob\i n . x ' , 'r oss t _poems. xt ' ,
' shelley _ ast - an . xt ' . ' shelley _ma hiloa . txt ' , ' shelley _ tales . x ']

fr doc 1 tra1ndocsf i 1es :
h open (authors/ ' + doc. ' rb ')

ful l text = fulltext . read()
traindocs.append(ul ltext)

Docum nt l abels. aka who wrote hem
targe s " [' bronte ' , ' bronte ' ,

' burns ' , ' burns ' .
• poe ' . ' poe ' . ' poe • ' poe ' .
' osset 1' , ' rossett i' ,
' sh \\ey ' . ' she ll y ' , ' shelley ' J

ul ltex

Screenshot or gif of code running

Training a classifier, screenshot 2
Creates word-count array for a give ex .

Use only vocabulary o top 1,888 ost freq en words
w open (' top1000. tx t · . rb') a vocdoc :

voe g {w[:-1} or w vocdoc.readlines()]

d wordfreq (docs) :
'' wordcou t(documen L1st) -> converts collect1on of documents to er frequency atr x • ' '
tf - T 1dfVecto i zer(vocabulary =voc,use _id - False)
al l texts "' [J
or doc docs :

al l texts .append(doc)
tfarray = t . f1t_transfor (alltexts)
.-e rri t array

#St p rm freq ency arrays or raini g docu en s s
tra i ntf ~ wordfreq(traindocs) . toarray()

Screenshot or gif of code running

Training a classifier, screenshot 3
#Setup classifier
gnb = Gaussi anNB()
preds = gnb. f i t(tra i ntf, t argets) . pred i ct(tra i ntf)
score ra i n= "%. 3f ~ I gnb . score (tra i ntf,targets)
pr1nt ("Class i f i e accuracy on tra i ning docu en se ·' scoret ain)

>>>
Classifier accuracy on training document set: 1.000

◄ T ►

Hooray! Let’s take a look at anonymous.txt. Okay so we know it’s Frankenstein, it’s
definitely Mary Shelley, although, fun fact, she first published it anonymously.

Using the trained classifier on anonymous.txt
classif O joblib.dump(gnb, ' journa classifier ') save classif i er

The docs whose au horsh 1p we don ' t know
(or do but want to use to test the class i fier)
testdocs "' (]
testdocsf i les"' [' anony o s.txt ')
o doc , testdocsfiles :

open (' au hors/ ' doc, ' rb') as ulltext :
fulltext = fulltex . read()
testdocs.append(ulltext)

#Setup er f r equency arrays for anony o s doc(s)
anontf = wordfreq(testdocs).toarray()

Use rained classifier on new text . r e urn pred ic ion
gnb es "'joblib.load(classif[8]) #reuse saved classif i er
predicttest = gnb es .predict(anontf)
print ("Predicted author of anony ous document : " . predicttest[0))

>>>
Predicted author of anonymous document : shelley

◄ T ►

(Fun fact: Mary Shelley did actually publish Frankenstein anonymously! But she
dedicated the novel to her father, so people didn’t need stylometry back then to figure
out it was her.)
So with Scikit-learn as one example of easy to use machine learning library, we can
see that anyone with programming chops can run an authorship attribution study, as
long as they have a big enough writing sample. Let’s talk about privacy and
anonymity again. If you write on the web — if you use Twitter, if you blog, if you
publish articles — you’re building your own writing corpus. So there is a slim chance
that if you ever attempted to write something anonymously, your own writing
elsewhere could give you away. I could compare your published writing, the articles
with your name on it, to the blog post you thought was anonymous, and use a
classifier to predict that you’re the author. And it’s easy to get an 80%+ accuracy rate
with these classifiers.

Which is kind of scary. Is there any such thing as anonymous writing anymore? Can
you ever write anonymously?

Can you ever write anonymously?

In fact, stylometric analysis is being used to unmask authors in a variety of ways,
including by law enforcement. Here, what’s fascinating with this snippet from an FBI
report is that the FBI sees a person’s unique, quantifiable writing style as a biometric.
This recommendation for an “emerging technology of writer identification” was written
alongside recommendations for voice and handwriting recognition.

FBI Crimina l Justice Information Systems
From ~Techno logy Assessmen t for the State of the Art Biometrics Excellence Roadmap (SABERr

n n-hand mmuni ati n b omc mo pre al nt u h a blo ging, text
me aging and mail there i a gr win ne d tJ identify\ rit rs not by their riltcn

ript, but by analysi of the typed content. Currently lh re a omc tudi in the
ar a of writ r's colloquial analysi that may I ad to lh cm rgiog t chnology of writer
identification in th 'blogo pherc ." The t chnologie could po sibly creat a profit
and e en identify writer identity . imilar to colloquial peecb analysis studies
hav hown that blogge and chatte u ·ca colloquial fom1 of writing in tcad of a
tandard fonn wh n bl g in chatting r te t m a · n . Recommend in tment in
icntifieally-ba ed text-independent e-mail and blog writ r idcntifi ation and

do umcnt linking.

Wayman. J., Orlans, N Hu, Q., Goodman. F. Ulnch, A , & Valencia, V 2009). Technology
Assessment for the State of the Art Biometncs Excellence Roadmap: Face, Iris, Ear. V01ce and
Handwnter Recogn,t,on. Re neved from https://www fbi.gov/ ..

So by using writing style as a behavioral biometric identifier, the FBI is positing
stylometry as a defense — a weapon to use against terrorist groups who recruit or
plan things online, for instance. Side note, if you’re thinking about stuff like ransom
notes and other writing that comes up in a court of law, forensic linguists use other
very different methods that are focused on different considerations, although
stylometry may be one tool on their toolbelt.

Other research focuses on “active authorization,” which guards against fraud and
hacking. If a user’s writing style deviates too far from their normal profile as they’re
writing emails and Word docs, the active authorization software flags the user as a
possible hacker.

Another defensive use for stylometry is closer to home for me — catching students
who cheat by hiring someone else to write their essay. Last year, a web app called
Emma launched and publicized a use case for teachers, where they could upload
their students’ papers and compare them to previous written essays. I’m not sure how
well it works, but they have identified a use case that educators do worry about.

Defensive uses of stylometry

• Blog/forum/social
media author
identification

• Active authorization
• Plagiarism software

''EMMA. Defi nin g Wri ing I dent ity . Disrup t ing
Plagiarism. N

~Teachers and professo rs can use Emma 's sk ills to
dete rm ine plagia ris m t hey may suspect in student
assignme nt s." - ,tt;hac ~

The previous 3 examples have all been defensive uses of stylometry — to catch
terrorists, prevent fraud, and find cheaters — but stylometry could also be used to
uncover people who write something anonymously for less nefarious reasons. For
digital humanists, this is exciting because we can now dig up poems and novels
written anonymously and make more educated guesses as to their authorship. JK
Rowling was outed pretty quickly as the author of A Cuckoo’s Calling, which she
wrote under a pen name because she was nervous about publishing a non-Harry
Potter book. Part of the reason she was unmasked was through a stylometric analysis
by Patrick Juola.

This isn’t limited to literature, however — other writers may also have a
justified reason for remaining anonymous. Whistleblowers who send emails about
company fraud, for instance, or op-ed writers in the New York Times who think they’re
part of the resistance, and so on. I don’t know who that op-ed author was, but
stylometry could potentially be used to uncover their identity.

Or say you’re blowing the whistle on some kind of wrongdoing you’ve
witnessed, and you want to send an email, but you’re worried for your job or your
safety. You send the email anonymously — you do all the right things, you create a
new email account, use a public access computer at your local library, you mask your
location, you use other privacy geek strategies. But if someone guesses that you
could be involved, you could end up in a pool of suspects, and your known writing
samples could be compared to your anonymous email. Even when there’s no other
evidence linking you to that anonymous email, your own words could give you away.

My thought is — we use stylometric methods for authorship attribution all the

Anonymous writing scenarios

• Activist working in oppressive conditions
• Novelist writing a different kind of novel
• Anonymous op-ed
• Whistleblower reporting wrongdoing

Is this a privacy concern?

Is there a way to outwit an authorship

attribution scenario?

..

u . .
(om >111,, I'

11 11 J. rto,, {! m It Ip, I
, , I _ _ , Ill ~ "nt, , \
oc .. ,,.,, ('1J/ft1

time. Can we use those methods for the opposite purpose — anonymization? Can we
use what we know about stylometry to outwit an authorship attribution scenario?

One way to circumvent authorship attribution through stylometry is to imitate someone
else’s style. The study on the screen asked their participants to write a passage in
their own voice, and then to rewrite it imitating the author Cormac McCarthy. They
showed this can actually work — the imitation writing could not be classified correctly.
However, this is a lot of work, and if you already have a message you want to
anonymize, you’d have to rewrite the whole thing to use this method.

Strategy 1 · Write like someone else

Imitate someone else's distinctive writing style

• Pros: Can actually work (see Brennan, Afroz, & Greenstadt 2012)
• Cons: Lots of time & effort; start writing from scratch

Si!e. Brennan . M . Afroz, S., & Greenstadt, R. (2012) . Adversarial Stylometry Circumventing Authorship Recogmt1on to Preserve Privacy and Anonymity ACM

Transactions on Information and System Security. 15(3) . Retrieved from ----------~--------

What if you didn’t have to rewrite it? Several research papers have been written on
the idea of using machine translation to hide your writing style, by translating
something from your language into one or more other languages and back to your
language. The idea is that the translate app will keep your general meaning but use
its own dictionary to choose different words. This might work, but it might not be
sustainable since machine translators keep improving. So eventually (or even now)
the writing style could actually be preserved. On the other hand, we’ve all had the
experience of using Google translate and getting complete nonsense back, or worse,
changing the meaning of your text in a critical way. So this is a risky move.

Strategy 2: Put your writing through a translator & back

• Pro: it might work! ... Depending on which language(s) you use
• Con: it might become nonsense!

English

- Hmong
- Spanish
- Icelandic
- English

Keep it secret! Keep it safe!
Cia nws zais cia! Khaws kom zoo!

jGuarda su secreto! iSigue asi!
Haltu leynum pinum! Haltu pvi upp!

Keep your secret! Stop it!

See Caliskan, A. & Gre-enstadt, R (2012) . Translate Once . Translate Twice. Transla te Thrice and Allnbute ldentify,ng Authors and Machine Translation Tools

1n Translated Tex I. In 2012 IEff Sixrn lnlernar1onal Conference on Semanr,c Computing (ICSC) (pp. 121-125) hllp://doi org/10 1109 / ICSC.2012 .46

Lastly, and this is the one we’ll spend the rest of the time focusing on, there is
stylometric obfuscation. The goal is to confuse the authorship attribution software by
using its methods against it. So you might consider typical stylometry features — like
word frequency, sentence length, and so on — and use stylometry software to identify
these in your own writing. Once you know your stylistic markers, you can try to avoid
using them, or revise a message you already have to take them out of your writing.
And then, this is the important bit, you can run your own writing though an authorship
attribution scenario. The goal is to have “no distinctive style.” To write blandly. I’ll
show you how this could play out.

Strategy 3: Stylometric obfuscation

• Use stylometry to identify your unconscious stylistic markers
• Lessen the frequency of these markers
• Then test in an authorship attribution scenario

"Obfuscation attacks on stylometric analysis involve writing
in such a way that there is no distinctive style."
- Obfuscation : A User's Guide (Brunton & Nissenbaum , 201 5)

See also: McDonald, A. W E., Al roz, S, Caliskan. A, Stoler man, A. & Greenstadt, R. (2012). Use Fewer Instances or the Lett er "i" : Towar d Writing Sty-le

Anonym1zat1on. Privacy Enhancing Techno logies 12th lnternat1om1I Symposium . PHS 2012 . LNCS 7384 Retneved from

I am currently working on a Python project called Nondescript, which is a web-based
tool that helps you anonymize your text in a simulated de-anonymization scenario.
Essentially, it’s a human-directed anonymizing helper that puts your writing through a
new authorship attribution scenario every time you run it.
(I should also say that there’s another project out of Drexel called Anonymouth that
has the same aim, but it’s got a different interface and is not written in Python. It’s still
cool though, you should look it up.)

Paste in a writing ampl Past in m sag .

pie

writing m

Before I demo the software, let me touch on what it’s comparing the user’s writing to.
To run an authorship attribution scenario, you have to compare it to something. I am
using the Blog Authorship Corpus, which dates from the year 2004. It contains
19,000+ blogs crawled from the web. These include personal blogs written by
teenagers (as you might expect), but also travel blogs, religious blogs, IT blogs, and
many more, written by authors with a wide range of ages, occupations, and writing
styles.

Side note, there are some issues with using blogs from 2004. Neologisms
coined since then (like selfie or vape) would not be included. And some words appear
more often than they do now. E.g., “George” appears about as often as the word
“Thursday” because so many people were blogging about current events (former
Pres. George Bush).

""I 18, Junc , 2"4 </dM
<l)OH>

thu u a t st to show ay 110t r "1'1•t • b\og 11 •ncl t>ow asy t y ar o ~t•rt,
but slle doesnt 91ve a sl\1t

_ _ <d_a_t_e~>-2•~.-Ap- r-.1.At,· 2~,-.-3-<-/da_t_P- -- ~ -~----t </l)C)SI>
<dUP lB,June, 2ff4 ,</cfate>
<pQS

lHt n1.911t I could not st p so I
ngdoa, of Goel into your v ryd y world.

sttl\ :idervalu4?d and 111inaliz4?d. lnud
don • eaven ke the c un:h bulletin! Yet
world oday.p.~ W@ \l.ke to thiJlk that
the \o'Orld. As a society o entrepreneurs
stlor cuts !)ht not ex st. ve be\ eve tlla
Q v nouQh ney t ppen .
one• s ingdo c ltizcns iP her ancl now 1S
insider. That 1.s because w are sOOfing s
to t:M people in our traf 1c patterns.
indeed, 1nva11Nf he present! p. 3S God
Une p w1ttl U purposu, to h s glory.
for n of us, not Just a g f eel f p. 2s
It ~ ires con cting w1th p ople wt! r t
are a ailiblc. o. 77

PIO too s btly. 1 ~ad a\reacry eat di.n~r, plus earlier a coap\e of chips w th
guac, sev; n1\ d vUO!d 41g9s and s ollv s. oo~ ..is a S: 4$

</POS >
all!> l8, JUJte, 2"4 /dAlr>

"1!\\, j didnt ru\\y

To be even more certain that Nondescript examines writing style and not topic when
performing authorship attribution, I only considered the top 1,000 words by frequency
in the corpus, the top two hundred or so as seen here.

Top 1000 words

a the I to and of in that my is it for was you on but with have so this be we at me not as he all are Just hke

they about or what 1f from out up had one when get wi ll do she can some by his her your an there then really

know would more who think go am has been no got were how t ime because going people good our back now
only see their want even went after much which into him other love last them very could than still over make

new its httle did day never first things way being someth ing say feel off too well where any should take also
need us around right here down most work those said two why these made thing before come life always whi le

many few today another next since find through long look home ever maybe though t every great getting night
pretty may came tell actua lly 1m let someone sure better lot same put best told doing give untll oh school read

myself bad big nothing such old having own does keep took everyone might u left hope found guess whole
friends world probably anything started talk trying away wanted call years try end called quite each nice without

must start everything days though saw enough least once place looking bit part house makes guy man god again

person kind year dont believe gonna both happy use hard help used fun done week blog decided post fnend able
hate almost remember seems stuff n anyone show three play mean finally talking hve times feeling already

thinking felt real watch movie making write else during name head asked stop diffe rent leave yet wish between
working mom mind hours past coming morning ask couple point far miss high seen girl car fact comes half

family care guys reading room free money hear knew rather run JOb later game change coo l book gave looked
lost taking sometimes set music cause says rest agains t full sleep heart ...

Here’s how it works. The user submits a writing sample and a message. Nondescript
chooses 3 to 7 random authors from the background corpus to compare the
documents to. (I’m doing 3 today.) It trains a Naive Bayes classifier on the writing
sample and two documents each from the 3 authors. (Why am I using a small pool of
authors? Mainly because the more authors there are, the longer it takes to run, so for
this example, we’re just doing 3. But we’re also doing 3 because this is a simulation of
an authorship attribution scenario where the user’s writing is being compared to a
small group of other suspected authors. In the real world, authorship attribution
studies can include as few as 1 other author or thousands.)

Then Nondescript uses the trained classifier to predict who wrote the
submitted message. The user doesn’t see any of the other random texts, by the way
— it’s all happening in the background, and the idea is that if you really were in an
authorship attribution scenario, you wouldn’t know who you’d be compared to
anyway. You just want to know, in this scenario, was it attributed to me or not?

• I I I I ' I I I< ~ • t lli t I

la lfier -~ ~II t t • · 4 I I t

.. It>. . . ~ . . . Sample F Toin

__ I '' . . I .
docOc doc lc doc2c

8
1.d ...,..,.. 14 mmb

Pt.die,

d d)d docld doc2d

11th nhlp predh ;llo
✓ docOc uthorO
✓ docOd 11thor0
X doc le 11tbor3

The output page will tell the user whether or not their message was attributed to them
(non anonymized) or not (anonymized). More information about the user’s writing is
also presented — simple analysis of word/sentence length and unusually frequent
words. This output screen also gives the user a chance to revise their message
before running another authorship attribution scenario.

At the bottom of the page, not only can the user work on the message they
submitted, but I also included a somewhat helpful feature that replaces some words in
your document with their synonyms. It’s really dumb synonym replacement, so
sometimes it’s helpful and sometimes it’s accidentally funny. This bit uses NLTK,
which I’ll explain in a sec.

You may be thinking, it’s a little odd that Nondescript is so self-contained, that
I chose the classifier and I’m trying to confuse it. That’s a legitimate point, but the
classifier is really a simple implementation of a Naive Bayes classifier using Scikit-
Learn. There’s nothing really special about it, and you can use the same classifier
with all kinds of writing for all kinds of purposes, not just the one we’re using here.
Still, I sometimes call this an educational tool — it’s not going to guarantee
anonymity, but it is going to make you think about your writing style and ways you
could disguise it if you have to. LIVE DEMO

~ •nu.alt

Try again?

I 1riumph to R<'t wind of t~t no ~

ich)'"' ha, uch

erday, and my first job · to____!!!!. my dear isttt of my

~ of m undertaking. i am already far north

which includes access to WordNet, a really amazing programmatic thesaurus

Synonym replacer : uses WordNet via NL TK , Natural Language Tool Kit

Word et Interfao
et is j1&S1 Moth« l't: oorpu1 rcadtt. and t'.M be imported r c thl :

>» ftoa nl k,COrPlla

:> ►> traa n.lt.k.corpu.e 1--port. wordr. t •• va

•• • •.1.1 _ I ■yu u 11; Liu fllOCtioo ha) optlooi&I - a,gument v.,h b lcu

»> ,1tyn • •c ' "°'1 ' I , -~ , •&1.&.1n11 •IOCI
ISJn■nC ' dog,n,01 I, SJn■ et(' t~. ■ ,Ot I, S)'l>M
Sya1 t(' f<attlt . n.OJ ' J, Sy-Met(' pavl.tt.01 '), S)'fl ..
>>> vn • .-ynae •C 'dov0

, poa-wu.VSU>
IIJn■U(' cha-.Y.01 11

JU _WNITISPAC:11
1 ·009.n,03 I, IJn.■•t(' cad,n,01 I,
(' and- roii.tt.01 '), Sytt1 (' cl••••·v.o ' II

IIDl!ll, ADJ 1111d ADV. A)'fflel lckotlficd with•)-pan name orthe fonn: wonl. .nn:

»> vn,aynae (' "°9,n.OI')
Sy■Ht(' dot,n,01 •)
>» P& ntC""'·•l"l .. tC ' d09·"·01 • 1.~Hnl oncJJ
• -.r ol tho 9onua C&n ■ (probab '1 do■~ tr- • .,_, wolf) t.hat baa -
>» l (·•rn■•q ' d.o<J.ll.O ' I••""-. -■I))
1
>» pr atCwa, ■yaH I dog,a,01 ' I ,H4U1pla(IIOJI
t • d09 b&J: ~ eU n tllt

nicated b1

Okay, here’s what I used to build the web app. We talked about Scikit-learn, and I’m
sure some of you are familiar with Flask, which basically lets you connect your Python
scripts to a web interface. I’m using a simple HTML web form, but I snazzed it up with
some jQuery. For the synonym replacer, I used NLTK, the Natural Language Toolkit. I
also used the WordFilter library because sometimes the synonym replacer came up
with really inventive synonyms for swear words, which was amusing but ultimately
inappropriate.

How I built it

• Scikit-Learn - classification
• Flask (framework) - web interface

• jQuery - UI interactivity

• NLTK
c, WordNet - synonym replacement

• WordFilter {library) - blacklist of bad words
• Blog Authorship Corpus, 2004 - background corpus

Nondescript is not online (yet!) but the code is on GitHub @robincamille.

I also used Google! A lot! As I built the first version of Nondescript, I went back to look
at all the things I Googled while I was making it. So anytime I felt like a badass
Pythonista, I could bring myself back down to earth by seeing that I had to look up
how to find an average with Python, after 4 years of coding.

Oui
0 •9 ul!i <UI dtCC>dt
authofi Ip c.luslritt open

1ource pytJ,o
u lc11late term freQue cv

PY, on
c•n mulllply KQUtft(t by

no" • n1 o l't~ 'flo•t'
unt p.u • ,n10 lOlt
tcti t do<.umen l ii"' 1lat1ty
tOilfle dO<.umt-n l iim larity

p on
CO!, •t slm u IV l)Ylhon
lOUftot\'tClOf Ztr
dtdupe python list
dtfaull ovtl>on llbru1t,
ddoultdlu
dtltct word c nd 9 PY, on

llb'1,Y
dtltct word tt nst python

llbruy
drta.,,hOSl dto lov app nu
error ty 6"1. rtOt cont.i.ln ,1

sc-ct,on
foiled to push somt tt I o
failed 10 push Ml t ttfs 10 fllu

100 b,O
• tr (oo• (•m• , 'U1)
sk css
,k multlp,gc .o,m
sk radio b,mon lorm
sk lUl lor •111 9
sk 1u10, I
ik u rl template

rorm1.t 1tnn9 oyt on
r-c,qd st

g,una,n "'' t b1ycs ,t 1m
gt1 clu .n OJt ch.alng•s t\Ot

nagtd ror comm
91t QIU' Cl I
how moi,y 'tirlablts python

lwnctlon Is too many
html orn1 90 to nt pa9t

I

.
o module namtd dtt~ct word tnd 9 pyt on
Cl,ln90.cort .managt r11tn1 library
wlllPY ope al\ils cov !Mil ~ dtlt<I word ttnn PYthon
bro•dC.t.il lOO• • wit llbruy
s •P<S U1r9•t• drumhOSl dtolov app ,iu

nvmpy Impon "·v tn10 .arr.ty , un u to an .a error key~, not tont.lln iJ

on• pip python sk ,rn 9aunr,in uu l! r ''"'°"
~p S ug - tftll sic 1111 Jobllb foiled 10 push IOlllt re I 0
o,p • DYthon un mu~s tailed to pus Ml t tt s to Mu
pr ni list 10 hit s a,11 naivt bayu con r,denct 100 b
p.JII bade. co l"lld w11ho.Jt a,n n.a.rve b.aru d«.lsk>n • u (ope (,unt . 'U'))

tasin9 c ,1_n9u score sk us
IIY1hon •II s •rn n•lv• bayes 1cort or 1k ijltlp•ge orm
ll'lthon lYtr•o• ••<~ 1ar11plt ftuk r•dlo b"'tton torm
J)Y'lhOn cl •. H ,IY S lrll 1mootll l ~ flask lUI lor a.Ill g
python codt- repl1u with ik .trn svm de(uon , n<.1.o Ruk lutcr I

1y onym s ,un 1Jiid'v«10 , zer Ruk .Jrl ltmplact
9'(1hon crv ,k arn u,cd tr,u.ncd tlaJ$1 ,f'r forma:t stnn9 ovt on
PY1hon dt ' - ·•· .. -· .-......... ·•,t
s,y1hon cs, ~ , , 1 an l"livt' biYti $k 1m
PY1i'lon la Things I Googled while makmg Nondescript lft 00 c'"ngr1 not

d1ttc10-,,__ ~,_. _ _..,., ""' . . -.,!4 ror comm
9Yfflon fu Choe docts.trl on un no¥1.n docurrie.nt 911 'oru 9 I

ex.imple s ;un 'lllt-b ai,p how mi")' v.irb1blu python
11Y1hon nchoa t1<,mpl son dl<I •lph•bttlo lfy fwn<1lon 11 100 many
O'/tllon IJ wa II Mitt dlwo~•rv by vi "' h1m1 orm go to n,.., pagr
ovthon •un<hO U dt*.lu llU :kOYtrrlOW tOMma-,d tint hltn l h¥0 lffltl
python ~Dore 1Pa uror firtd llu of cert;u 112.t In sun<-~ muhodl Pvt on
PY1hon 1111 formot1ln9 ub, urlng lorra•t m ltlple il<rloo s c un •d 11>1

1t g ttng1 a,gurncc,u. \ kmu:ns prcd doc.imen
O'f1hon median strlr,g lor a111t1g 1111 • II u ovrr • oru n , ,~~
IIY1hon open ,ir wi h rudlt ts nrlr,g torman l119 ,ntt9tr tin~•
c,vmon Qu,ck dtduoe I I string or UM!I sir ng float list l s d ,rtc1orv o tr
OvthOn QUll putt I ltOU <tfll ltl 1•H
ovthon ru.dom n ber term 'rcq e cy Pvt on Ult pop
j)Vlhon rud 1n t u floi1U tc,ct •orm with H Hit f('VtrJC $Ort O)'l~

p'flhon Jet dtt~ull •or •r•tb lf' t t,klt•m b I
J1Y1hon s11 dtfau11 tor ., ,.b f {I vec1orizer n,achi"t !tun ng 1klurn

1n hMc1101'\ tndf vec1oriier m.ore_irenools
python split te.xt i lo even tfidf vecton:z.u smaol mulUword t.a:preJPO Sy.non

<hunk$ too many ~,,o1 b t-s pyt !'I python
py,hon , wrippcr iVO d u11cuo11 nip slm•b.ruy sco e document

spl 1,no "ord1 1PtError 1101 •II •rgumtnu nip word ending Pvtllon ltbrory

P'flhon cs
PY1hon d 'iulld lct
11Y1hon 1'01 •"•Y
OY'IIIOn I tttl'\' I t ln

d tcte>,y
python ~unctMJD do<:tstrl

uco1mplc
python Ufl(IIOft tkol mplc

ll'ltllOn '" CIIO n
pytf'lon '" ctao u de'.ii.,
python 19 ore tf& error
python hst fo,mittln~ tab,

ll 9 leng th
l)Y'lhOft mtdlan
PYlhon o~n , with rudllll
l>'(thon Qu,tk dtduJ)t l,st
11'(thon Qu t PUlt
:Pvthon r.a dom ,nuimbu
,pyihon re.ad 111 ~s floats
ov,hon It! dtfiU It 'or Vi n•bl
O'/lhOn HI dd u It •or ~rl•b E

,n fiJ'lctJon
P¥thon split text to even

chunk,
O'f1hon te wrappe r avoid

splo ing "ords
ll'/thOft try I.CtP I
OY1hon wh lie r,,o cond IIIMS
ovthon with ,ud lln••
q ,,.111 erw
1.ando •u 11,,
rerao-c lrom git push wl hou

Chil/lQIPQ lou.l dat•
~ s tll SU.Pl lwn ,n~I

SC ~,1m
sc ~m cl1n 1fi r s<.or~
n9mentatlon fault 11 py,ho
1 furn

I ''"" (lie
s lt.u n <IJ.li ' r opuand.s

could not b• broadu,t
togec er

Nondescript is a human-powered system. I’m currently running a user study to
see how it can help real humans. But since I don’t have the user study results
yet, I tested what I could test: whether the synonym-replacement feature (the
“I’m feeling fortuitous” tab) did anything. So I ran Nondescript on the writing for
40 authors in the Blog Corpus that were set aside. The synonym-replacement
message was misclassified significantly more often compared to the original
message. What this doesn’t tell you, however, is whether the meaning is
preserved in the synonym-replacement message, or whether it’s human-
readable, or how easy it is to use Nondescript. So that’s why I’m running the
user study.

CJa ifi r a cura

6.5

s .J-- -r---.. ---------------

.s
so ··-1 I ■ 1111 1111 . - . ., "''

Of the 200 times an original message was
classified . the classifier was correct 99 times
(49.5%). Of the 200 times a synonym­
replacement message was classified , the
classifier was correct 70 times (35.0%) .

Though the classifier accuracy for the
original messages was low compared to the
overall classifier score (but still substantially
better than random chance) . the synonym ­
replacement message was m1sclass1f1ed
significantly more often compared to the
original message .

Conclusions

• Stylometry can be used in authorship attribution scenarios
• It may be possible to outwit a stylometric analysis by running your own

authorship attribution simulations to revise your message

Your to-do list:

• Try Scikit-learn
• Consider your own writing habits : how would you try

writing something anonymously?

Further reading

Brunton, F ~ & N1ssenbaum, H. (2016). Obfuscation: a user's guide for privacy and protest. Cambridge, MA: MIT Press.

Caliskan, A., & Greenstadt. R. (2012) . Translate Once, Trans late Twice , Translate Thrice and Attribute : Identifying Authors and Machine Translation
Tools in Translated Text. In 2012 IEEE Sixth fnrema!ional Conference on Semantic Computing (Iese) (pp. 121- 125).
I I J 1 . , 1 r , _ .

BreMan , M~ Afroz. S .• & Gseenstad R. (2.012). Adversarial Stylometry: Circumventing Authorship Rec011nition to Preserve Privacy and Anonymity .
ACM Transactions on lnformallon and Sysrem Security, 15(3). Retrieved from h tr r. x I p . 1 I I, rr . 1 F cl

Fndman, L., Slol!N'man, A. , Acharya . S., Brervian , P., Juola, P .• Greenstadt, R. , & Kam, M. (2015). Multi-modal decision fus ion for continuous
authentication . Computers & Electrical Engineering . 41, 142-156 . ~. . a , 1 t J -

McDonald, AW . E .• Afroz. S., Cal,skan. A.. Stolerman, A., & Greenstad~ R. (2012) . Use Fewer Instances of the Letter "i": Toward Writing Style
Anonymization . Privacy Enhancin-g Tech.nologies, 12th Internationa l Symposium, PETS 2012. LNCS 7384. Retrieved from

~ llf 1 I r y 11 th pdr

