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In this talk, we will...

e Learn what stylometry is
e Talk about stylometric obfuscation
e Look at the Scikit-learn Python library




About me

By day: Library science!
By night: Computational linguistics!

Research project: “Writing Against the Machine: Toward Stylometric
Obfuscation,” funded by PSC-CUNY

Programmer level: aspirationally intermediate




Before | talk about what stylometry is, let’s rewind 55 years ago...




JOURNAL OF THE AMERICAN
STATISTICAL ASSOCIATION

Number 302 JUNE, 1963 Volume 68

INFERENCE IN AN AUTHORSHIP PROBLEM:*

A comparative study of discrimination methods applied
to the authorship of the disputed Federalist papers

Freprrick MosTELLER
Harvard University
and
Center for Advanced Study in the Behavioral Sciences
AND
Davip L. Warrace
University of Chicago

This study bas four purposes: to provide a comparison of discrimi-
nation methods; to explore the problems presented by techniques based
strongly on Bayes' theorem when they are used in a data analysis of
large scale; to solve the authorship question of The Federalist papers;
and to propose routine methods for solving other authorship problems.

This may be the most famous stylometry paper. This is Mosteller and Wallace’s
Bayesian analysis of the Federalist Papers. Famously, the Federalist Papers were
penned anonymously under a pen name by Hamilton, Madison, and John Jay, and for
most of the papers it was clear who wrote what, but there were 12 papers whose
authorship was in dispute.




TABLE 2.3. FREQUENCY DISTRIBUTION FOR upon

Rate/1000 words H amilton Madison
0 (exactly) — 41
0+-1 1 7
1 -2 10 2
2 -3 11
3 -4 11
4 -5 10
5 -6 3
6 -7 1
7 -8 1
Totals 48 50

(out of Hamilton's 48 known papers and Madison’s 50 known papers)

They did a very innovative statistical analysis of the text of the Federalist Papers.
They modeled frequency distributions of the words in the text. Here, you see that
Hamilton uses the word upon at a higher rate than Madison does, overall, looking at
the papers that are known to be written by them.




Paper #34 by Hamilton: 10 upons Paper #39 by Madison: 0 upons

To illustrate this, here’s a typical Federalist paper by Hamilton and one by Madison.
Hamilton is all-up-ons, as Strong Bad would say, and Madison tends not to use that
word.



A sampling of the papers that may have
been written by Hamilton or Madison

————

Here are 4 of the 12 disputed papers. Visually, you can see that upon isn’t used that

much.




71 affect *57 directica *04 innovation

*72 amnin %0 commonly *58 disgracing *08 join 103 rapid

*73 although | *S1 consnquently 80 cither 06 langeape 104 mme

74 amoag *52 corsiderable | *90 emough (aad in) 07 meet 108 second

78 another *53 contribute sample of 20) 08 por 106 stid

76 because *$4 deferaive 1 fortese 09 cffernive 107 these

77 betwesn *85 destruction *92 fesction 100 often *108 throughout
78 beth & did 93 himsel! 101 pase 100 under

TABLE 2.5. FUNCTION WORDS AND THEIR CODE NUMBERS
FOR THE FEDERALIST STUDY

la

2 all

3 also
4 an

5 and
6 any
7 are

8 as
9 at
10 be
11 been
12 but
13 by
14 can

15 do
16 down
17 even
18 every
19 for
20 from
21 had

22
23

has
have
24 her
25 his
26 if
27 in
28 into

29 is
30 it

31 its
32 may
33 more
34 must
35 my

36 no
37 not
38 now
39 of
40 on
41 one

42 only

43 or

44 our
45 shall
46 should
47 so

48 some
49 such

50 than
51 that
52 the

53 their
54 then
55 there
56 thing

this
to
up
upon
was
were
what

57
58
59
60
61
62
63

64
65
66
67

when
which
who
will
68 with
69 would
70 your

TABLE 2.6. ADDITIONAL WORDS AND CODE NUMBERS FOR
THE FEDERALIST 8TUDY

0 clty

102 pertaps

*110 vigor
*111 violate
*112 viclence
*113 voice
114 where
115 whether
*118 whide
117 whiln

TABLE 2.7. NEW WORDS FROM THE WORD INDEX STUDY

TOGETHER WITH THEIR CODE NUMBERS

118 about
119 secording
120 sdversaries
121 after
122 wid

123 alwaye
124 apt

125 samerted
126 before
127 being
128 better
120 eare

139 ehoice

158 extent

1wt

131 common

132 danger

133 decide +9 +od +ing
134 degree

138 durisg

138 expence 44

157 expenme 48

13 follow +e+ed $ing

141 imagine +9+ed +ing

|
|
|

142 intrust 49 +od 4ing

143 kind

144 large

145 Dikely

146 matter o
T moreover
148 necemary
149 necessity | ies
150 others

151 particularly
152 prineipls
153 probabllity

! 154 proper

| 153 propuiety
156 provision 49
157 requisite
158 substance
150 they
160 though
181 truth ds
162 us
163 usage 40
164 we
165 work 4»

“Upon” was only one of the 165 words that Mosteller and Wallace considered. And
counterintuitively, they chose to use the most common words to ascertain authorship.

Because it's the really common words, like upon and about and necessary and

always, that can give away the author of an anonymous paper regardless of its topic.
More specific words, like Congress, are too contextual and aren’t useful for
discrimination when it comes to authorship. Plus, we use these more common words
pretty unconsciously -- Hamilton probably wasn’t intentionally using the word “upon” a
lot, that was just the way he wrote. In the end, the authors of this study found that
there was a high likelihood that Madison wrote all 12 of the disputed papers.
Importantly, they said this work supplements the work that historians do, rather than
replacing it. Their paper laid out the statistical foundations of stylometry as we know it

today.




Stylometry

Quantifiable measurement of an author’s writing style

Here’s the definition that I've given to stylometry: the quantifiable measurement of an
author’s writing style. You could also call stylometry the statistical measurement of
language.



Let’s fast forward 55 years and see where we’re at now.




How can we perform stylometric analysis
with Python?

What you need:

e Corpus of texts
e Scikit-learn (pip install sklearn) <—an amazing machine learning library
e Optional: NLTK (pip install nltk)

Okay, cool history lesson, but this is a Python conference! Let’s talk about Python.
Python is awesome for textual analysis — it's quick and has lots of built-in libraries.
To perform stylometric text analysis, you would need a corpus of texts (just a folder
full of .txt files) and a machine learning library. I'll be focusing mainly on Scikit-learn
today.



scikit-learn

Machine Learming in Fython

Classification Regression Clustering

Identitying 1o which category an cbject be- Predicting a continuous-valued attribute asso- Automatic grouping of similar objects into
longs 1o ciated with an object

Appli Spam Image recog- Applications: Drug response, Stock prices.

nition. Algorithms: SV, ridge regression, Lasso, ..

Algorithms: SVM, nearest neighbors, random Lia~pes

forest, Canmpwn - P (ax—paos

Dimensionality reduction Model selection Preprocessing

Reducing the number of random variables % Comparing, valdating and choosing parame- Feature extraction and normalization.
consider. 1ers and mocels. Application: Transforming input data such as

Applications: Visualzation, Incroased offi- Goal: Improved accuracy via parameter tun- taxt for usa with machine leaming algorithms.
cency ng Modules: proprocassing, feature axvaction

Algorithms: PCA, loature selection, non-neg- Modules: (rid search, cross vakdation, met- Exnmpios
ative matrix factorization Lrampen nes, Erampeos

Scikit-learn was started as a Google Summer of Code project a decade ago, and
since then it's become a very successful open-source code project. It's got great
documentation! It's a very powerful library, and we’re focusing on just one application:
classification.



A very simple classification program might distinguish between spam emails and not-
spam emails.




e » _
Robert Burns s Samuel Taylor Coleridge

A slightly more complex classifier might be able to distinguish which texts were
written by each author in a set. It's basing its guesses on samples it already has from
each author.




Classification using machine learning

TL;DR: Categorizing documents (data) using a list of pre-chosen categories (labels)
according to some feature, powered by statistics! Assume that the set of documents
includes some by the real author.

e "Based on the appearance of words like ‘business opportunity,’ this email is
classified as spam.”

e “Based on sentence length and word frequency, this novel is classified as having

been written by Charlotte Bronté."

So classification is basically categorization. You're categorizing documents (like
emails and novels) using a list of pre-chosen labels (like Author A, Author B, or
spam/not spam). You're categorizing these documents according to some features,
like how often the author uses specific words, like how we saw with the Federalist
Papers. So you might have an anonymous novel and you suspect one of 6 known
authors wrote it. Your categories in this case would be those authors. Based on the
features of sentence length and word frequency, you could classify a novel has
having been by, say, Charlotte Bronté. This is done at scale using machine learning.
Scikit-learn has several types of classifiers that take different approaches to these
problems, which you can dive into yourself on their website if you're into stats!
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Mary Shelley

Samuel Taylor Coleridge

So let’s run through a small example. Say I've got writing by these 6 authors, plus I've
got another document with an unknown author.



Features to use for text classification

Word frequency < super common: our choice today
Word length

Sentence length

Punctuation frequency

Emoji use

Typo frequency

Etc.

First, let's decide what should we base our classifier's decisions on. Let’s stick with
word frequency, which the Federalist Paper study used, too. You could also use...



The term frequency (Bag of Words) approach

the to and of
bronte_shirley.txt ©0.5149526 ©.3376386 0.3728635 0.2951648
bronte_villette.txt ©.533057 ©.3051213 0.4068919 0.3092505
burn s=1etter‘s LExt 0.5434705 0.329901 ©0.3128745 0.4436735

Each feature is the frequency of a word
Doesn't consider topic, word order, etc.
Pretty dumb

Works well enough forme © £

For my examples today, I’'m only focusing on term frequency, which is sometime
called the Bag of Words approach. We'll consider the top 1000 most common words.
So since we’re only considering some words, you’ll notice that we don’t care at all
about word order, or syntax, or topic — this is definitely a dumb approach. But you
know what, it works well enough for me.



Count

Frequency

Word count vs. word frequency

the to and of
bronte_shirley.txt 9093 5962 6584 5212
bronte_villette.txt 8391 4803 6405 4868
burns_letters.txt 5522 3352 3179 4508
burns_poems.txt 5903 2117 3192 1238
poe_cask.txt 168 50 61 76

the to and of
bronte_shirley.txt ©.5149526 0.3376386 ©.3728635 0.2951648
bronte_villette.txt ©.533057 ©.3051213 0.4068919 0.3092505
burns_letters.txt 0.5434705 0.329901 ©0.3128745 0.4436735
burns_poems.txt 0.6979053 0.2502906 0.3773867 0.1463674
poe_cask.txt 0.7127993 ©.2121426 0.258814 0.3224568

Quick note, word frequency or term frequency is different than a plain old word count.
Since the documents we’re analyzing might be different lengths, it makes sense to
use frequency than just counting up how often ‘the’ is used, so we can actually
compare documents to each other regardless of length. (Open up IDLE)




Training a classifier, screenshot 1

from sklearn.naive_bayes import GaussianNB
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.externals import joblib

# Set up document lists

# The docs whose authorship we Know

traindocs = []

traindocsfiles= ['bronte_shirley.txt', 'bronte_villette.txt',
'burns_letters.txt', 'burns_poems.txt',
'poe_cask.txt', 'poe_masque.txt', 'poe_raven.txt', 'poe_usher.txt',
‘rossetti_goblin.txt', ‘'rossetti_poems.txt’,
'shelley_last-man.txt', 'shelley_mathilda.txt', 'shelley_tales.txt']

for doc in traindocsfiles:
with open('authors/' + doc, 'rb') as fulltext:
fulltext = fulltext.read()
traindocs.append(fulltext)

# Document labels, aka who wrote them
targets = ['bronte', 'bronte’,
‘burns', 'burns’,
‘poe’, 'poe', 'poe', 'poe'’,
‘rossetti', 'rossetti’',
'shelley', 'shelley’, ‘shelley’]

Screenshot or gif of code running




Training a classifier, screenshot 2

# Creates word-count array for a given text.

# Use only vocabulary of top 1,000 most frequent words
with open('tople00.txt', 'rb') as vocdoc:

voc = [w[:-1] for w in vocdoc.readlines()]

def wordfreq(docs):
"' 'wordcount (documentList) -> converts collection of documents to term frequency matrix'''
tf = TfidfVectorizer(vocabulary=voc,use_idf=False)
alltexts = []
for doc in docs:

alltexts.append(doc)

tfarray = tf.fit_transform(alltexts)
return tfarray

# Set up term frequency arrays for training document sets
traintf = wordfreq(traindocs).toarray()

Screenshot or gif of code running




Training a classifier, screenshot 3

# Set up classifier

gnb = GaussianNB()

preds = gnb.fit(traintf, targets).predict(traintf)

scoretrain = "%.3f" % gnb.score(traintf, targets)
print("Classifier accuracy on training document set:", scoretrain)

>>>
Classifier accuracy on training document set: 1.000

4V )

Screenshot or gif of code running




Using the trained classifier on anonymous.txt

classif = joblib.dump(gnb, 'journalclassifier') #save classifier

# The docs whose authorship we don't know

# (or do but want to use to test the classifier)

testdocs = []

testdocsfiles = ['anonymous.txt']

for doc in testdocsfiles:

with open('authors/' + doc, 'rb') as fulltext:

fulltext = fulltext.read()
testdocs.append(fulltext)

# Set up term frequency arrays for anonymous doc(s)
anontf = wordfreq(testdocs).toarray()

# Use trained classifier on new text, return prediction < V ’
gnbtest = joblib.load(classif[@]) #reuse saved classifier

predicttest = gnbtest.predict(anontf)

print("Predicted author of anonymous document:", predicttest([0])

>>>
Predicted author of anonymous document: shelley

Hooray! Let’s take a look at anonymous.txt. Okay so we know it's Frankenstein, it's
definitely Mary Shelley, although, fun fact, she first published it anonymously.




(Fun fact: Mary Shelley did actually publish Frankenstein anonymously! But she
dedicated the novel to her father, so people didn’t need stylometry back then to figure
out it was her.)

So with Scikit-learn as one example of easy to use machine learning library, we can
see that anyone with programming chops can run an authorship attribution study, as
long as they have a big enough writing sample. Let’s talk about privacy and
anonymity again. If you write on the web — if you use Twitter, if you blog, if you
publish articles — you’re building your own writing corpus. So there is a slim chance
that if you ever attempted to write something anonymously, your own writing
elsewhere could give you away. | could compare your published writing, the articles
with your name on it, to the blog post you thought was anonymous, and use a
classifier to predict that you're the author. And it’s easy to get an 80%+ accuracy rate
with these classifiers.




wm m Em wm B Emw W

m w Em Em B wm W

Can you ever write anonymously?

Which is kind of scary. Is there any such thing as anonymous writing anymore? Can
you ever write anonymously?




FBI Criminal Justice Information Systems
From “Technology Assessment for the State of the Art Biometrics Excellence Roadmap (SABER)”

As non-handwritten communications become more prevalent, such as blogging, text
messaging and emails, there is a growing need to identify writers not by their written
script, but by analysis of the typed content. Currently, there are some studies in the
area of writer’s colloquial analysis that may lead to the emerging technology of writer
identification in the “blogosphere.” These technologies could possibly create a profile
and even identify a writer’s identity. Similar to colloquial speech analysis, studies
have shown that bloggers and chatters use a colloquial form of writing instead of a
standard form when blogging, chatting, or text messaging. Recommend investment in
scientifically-based text-independent e-mail and blog writer identification and
document linking.

In fact, stylometric analysis is being used to unmask authors in a variety of ways,
including by law enforcement. Here, what’s fascinating with this snippet from an FBI
report is that the FBI sees a person’s unique, quantifiable writing style as a biometric.
This recommendation for an “emerging technology of writer identification” was written
alongside recommendations for voice and handwriting recognition.




Defensive uses of stylometry

e Blog/forum/social
media author
identification
Active authorization
Plagiarism software

"EMMA. Defining Writing Identity. Disrupting
Plagiarism.”

"Teachers and professors can use Emma’s skills to
determine plagiarism they may suspect in student
assignments.” —Lifehacker

So by using writing style as a behavioral biometric identifier, the FBI is positing
stylometry as a defense — a weapon to use against terrorist groups who recruit or
plan things online, for instance. Side note, if you’re thinking about stuff like ransom
notes and other writing that comes up in a court of law, forensic linguists use other
very different methods that are focused on different considerations, although
stylometry may be one tool on their toolbelt.

Other research focuses on “active authorization,” which guards against fraud and
hacking. If a user’s writing style deviates too far from their normal profile as they’re
writing emails and Word docs, the active authorization software flags the user as a
possible hacker.

Another defensive use for stylometry is closer to home for me — catching students
who cheat by hiring someone else to write their essay. Last year, a web app called
Emma launched and publicized a use case for teachers, where they could upload
their students’ papers and compare them to previous written essays. I’'m not sure how
well it works, but they have identified a use case that educators do worry about.



Anonymous writing scenarios

e Activist working in oppressive conditions [=———
e Novelist writing a different kind of novel | " ~
|' \;:"\\"."l.'.'\",';;;';\l,;::l:.:":\':"|.",.‘l“‘l" «

' Cuckagy ¢ ulling

e Anonymous op-ed
e Whistleblower reporting wrongdoing =

-

Is this a privacy concern? |
' L )

Is there a way to outwit an authorship ,’ ——— &
attribution scenario? '." == E
|l| . ‘,IOL.

The previous 3 examples have all been defensive uses of stylometry — to catch
terrorists, prevent fraud, and find cheaters — but stylometry could also be used to
uncover people who write something anonymously for less nefarious reasons. For
digital humanists, this is exciting because we can now dig up poems and novels
written anonymously and make more educated guesses as to their authorship. JK
Rowling was outed pretty quickly as the author of A Cuckoo’s Calling, which she
wrote under a pen name because she was nervous about publishing a non-Harry
Potter book. Part of the reason she was unmasked was through a stylometric analysis

by Patrick Juola.

This isn’t limited to literature, however — other writers may also have a
justified reason for remaining anonymous. Whistleblowers who send emails about
company fraud, for instance, or op-ed writers in the New York Times who think they’re
part of the resistance, and so on. | don’t know who that op-ed author was, but

stylometry could potentially be used to uncover their identity.

Or say you're blowing the whistle on some kind of wrongdoing you’'ve
witnessed, and you want to send an email, but you’re worried for your job or your
safety. You send the email anonymously — you do all the right things, you create a
new email account, use a public access computer at your local library, you mask your
location, you use other privacy geek strategies. But if someone guesses that you

could be involved, you could end up in a pool of suspects, and your known writing
samples could be compared to your anonymous email. Even when there’s no other

evidence linking you to that anonymous email, your own words could give you away.
My thought is — we use stylometric methods for authorship attribution all the



time. Can we use those methods for the opposite purpose — anonymization? Can we
use what we know about stylometry to outwit an authorship attribution scenario?



Strategy 1: Write like someone else

Imitate someone else’s distinctive writing style

e Pros: Can actually work (see Brennan, Afroz, & Greenstadt 2012)
e Cons: Lots of time & effort; start writing from scratch

See: Brennan, M., Afroz, S, & Greenstadt, R. (2012). Adversarial Stylometry: Circumventing Authorship Recognition to Preserve Privacy and Anonymity. ACM

Transactions on Information and System Security, 15(3). Retrieved from

One way to circumvent authorship attribution through stylometry is to imitate someone
else’s style. The study on the screen asked their participants to write a passage in
their own voice, and then to rewrite it imitating the author Cormac McCarthy. They
showed this can actually work — the imitation writing could not be classified correctly.
However, this is a lot of work, and if you already have a message you want to
anonymize, you'd have to rewrite the whole thing to use this method.



Strategy 2: Put your writing through a translator & back

Pro: it might work! ... Depending on which language(s) you use
Con: it might become nonsense!

English Keep it secret! Keep it safe!
— Hmong Cia nws zais cia! Khaws kom zoo!
— Spanish iGuarda su secreto! {Sigue asi!
— lcelandic Haltu leynum pinum! Haltu pvi upp!
— English Keep your secret! Stop it!

See: Caliskan, A, & Greenstadt, R. (2012). Translate Once, Translate Twice, Translate Thrice and Attribute: Identifying Authors and Machine Translation Tools
in Translated Text. In 2072 IEEE Sixth International Conference on Semantic Computing (ICSC) (pp. 121-1285). http.//doi.org/10.1109/1CSC.2 4

What if you didn’t have to rewrite it? Several research papers have been written on
the idea of using machine translation to hide your writing style, by translating
something from your language into one or more other languages and back to your
language. The idea is that the translate app will keep your general meaning but use
its own dictionary to choose different words. This might work, but it might not be
sustainable since machine translators keep improving. So eventually (or even now)
the writing style could actually be preserved. On the other hand, we’ve all had the
experience of using Google translate and getting complete nonsense back, or worse,
changing the meaning of your text in a critical way. So this is a risky move.



Strategy 3: Stylometric obfuscation

Use stylometry to identify your unconscious stylistic markers
Lessen the frequency of these markers
Then test in an authorship attribution scenario

“Obfuscation attacks on stylometric analysis involve writing

in such a way that there is no distinctive style.”
—Obfuscation: A User’s Guide (Brunton & Nissenbaum, 2015)

See also: McDonald, A. W.E., Afroz, S, Caliskan, A, Stolerman, A, & Greenstadt, R. (2012). Use Fewer Instances of the Letter "i": Toward Writing Style
Anonymization. Privacy Enhancing Technologies: 12th International Symposium, PETS 2012, LNCS 7384. Retrieved from

Lastly, and this is the one we’ll spend the rest of the time focusing on, there is
stylometric obfuscation. The goal is to confuse the authorship attribution software by
using its methods against it. So you might consider typical stylometry features — like
word frequency, sentence length, and so on — and use stylometry software to identify
these in your own writing. Once you know your stylistic markers, you can try to avoid
using them, or revise a message you already have to take them out of your writing.
And then, this is the important bit, you can run your own writing though an authorship
attribution scenario. The goal is to have “no distinctive style.” To write blandly. I'll
show you how this could play out.



This web toy compares your writing sample and a message you want to anonymize to 3 random authors in our background corpus. It will
tell you whether your message is more similar to your writing sample or to another author’s writing, based solely on how frequently you
use common words, (Read more about how this is done.) You'll have a chance to revise your message. Can you change your message

enough to anonymize it?

Paste in a writing sample. Paste in a message.

Works best with 7,000-20,000 words. This sample This is the message you would like to anonymize.
should be in the same genre of writing as the You will have the chance to keep revising this
message you'll use at the right, e.g., scientific writing message.

or casual emails.,

| am currently working on a Python project called Nondescript, which is a web-based
tool that helps you anonymize your text in a simulated de-anonymization scenario.
Essentially, it's a human-directed anonymizing helper that puts your writing through a
new authorship attribution scenario every time you run it.

(I should also say that there’s another project out of Drexel called Anonymouth that
has the same aim, but it's got a different interface and is not written in Python. It’s still
cool though, you should look it up.)



Blog Authorship Corpus

<date>10,August,2003</date>

<post>

I've logged on numerous times over the past we
thoughts.
my head” in my head. Sure, I'l1l talk about what's go
that are bugging me. But my real fears, my real str¢
those I keep mostly to myself, possibly a select few
it's unfair for me to do this. It's unfair for me to

As you can see, I haven't been successful.

trust me
mind dum
to seem

more rea
deal wit
unsettle
It's not
that I m
that I m|
ny face,
into wha
place, b
out ther
here. B

B one's kingdom citizenship here and now is

<date>24,April,2003</date>
<post>

Last night I could not sleep so I r
Kingdom of God into your everyday world,
still undervalued and marginalized. Insid
don‘t eaven make the church bulletin! Yet
world today.p.64 We like to think that t
the world. As a8 society of entrepreneurs
shortcuts might not exist. We believe tha
give enough money we con make it happen.

insider. That is because we are sowing se
to the people in our traffic patterns. We
indeed, invaded the present! p. 35 God L
line up with his purposes, to his glory.

<date>18, June, 2004</date>

<post>

this is 2 test to show my mother what a weblog is and how casy they are to start,
but she doesnt give a shit

</post>
<date>18, June, 2084</date>
<post>

not too shabby. 1 had already eaten dinner, plus earlier a couple of chips with
guac, several deviled eggs and some olives. took meds at 5:45

</post>
<date>18,June, 2004</date>
<post>

well, i didnt really cat a breakfast - several slices of pepperoni and a large
english cuke. However at T1's I had a small cup of coffee and cream and I just wolfed down
a cup of cottage cheese. I dont know how soon the sugar scars after ingestion. time for a
med. i either mised my glipizid this morning or taking an extra one for lunch,

v TREY 13 WITKIA reach

for all of us, not just & gifted few. p.25 Being an insider requires a change in venue.
It requires connecting with people where they are, on their turf, and at tises when they

are availible. p.77

Before | demo the software, let me touch on what it's comparing the user’s writing to.
To run an authorship attribution scenario, you have to compare it to something. | am
using the Blog Authorship Corpus, which dates from the year 2004. It contains
19,000+ blogs crawled from the web. These include personal blogs written by
teenagers (as you might expect), but also travel blogs, religious blogs, IT blogs, and
many more, written by authors with a wide range of ages, occupations, and writing
styles.

Side note, there are some issues with using blogs from 2004. Neologisms
coined since then (like selfie or vape) would not be included. And some words appear
more often than they do now. E.g., “George” appears about as often as the word
“Thursday” because so many people were blogging about current events (former
Pres. George Bush).



Top 1000 words

a the | to and of in that my is it for was you on but with have so this be we at me not as he all are just like
they about or what if from out up had one when get will do she can some by his her your an there then really
know would more who think go am has been no got were how time because going people good our back now
only see their want even went after much which into him other love last them very could than still over make
new its little did day never first things way being something say feel off too well where any should take also
need us around right here down most work those said two why these made thing before come life always while
many few today another next since find through long look home ever maybe thought every great getting night
pretty may came tell actually im let someone sure better lot same put best told doing give until oh school read
myself bad big nothing such old having own does keep took everyone might u left hope found guess whole
friends world probably anything started talk trying away wanted call years try end called quite each nice without
must start everything days though saw enough least once place looking bit part house makes guy man god again
person kind year dont believe gonna both happy use hard help used fun done week blog decided post friend able
hate almost remember seems stuff n anyone show three play mean finally talking live times feeling already
thinking felt real watch movie making write else during name head asked stop different leave yet wish between
working mom mind hours past coming morning ask couple point far miss high seen girl car fact comes half
family care guys reading room free money hear knew rather run job later game change cool book gave looked
lost taking sometimes set music cause says rest against full sleep heart ..

To be even more certain that Nondescript examines writing style and not topic when
performing authorship attribution, | only considered the top 1,000 words by frequency
in the corpus, the top two hundred or so as seen here.



Randomly-chosen authors from background corpus
Classifier = author0 authorl author2

2 docurments S g documents
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Authorship predictions
docOc  author0
docOd  author0
doclc  authord

MESSage user

Here’s how it works. The user submits a writing sample and a message. Nondescript
chooses 3 to 7 random authors from the background corpus to compare the
documents to. (I'm doing 3 today.) It trains a Naive Bayes classifier on the writing
sample and two documents each from the 3 authors. (Why am | using a small pool of
authors? Mainly because the more authors there are, the longer it takes to run, so for
this example, we’re just doing 3. But we’re also doing 3 because this is a simulation of
an authorship attribution scenario where the user’s writing is being compared to a
small group of other suspected authors. In the real world, authorship attribution
studies can include as few as 1 other author or thousands.)

Then Nondescript uses the trained classifier to predict who wrote the
submitted message. The user doesn’t see any of the other random texts, by the way
— it's all happening in the background, and the idea is that if you really were in an
authorship attribution scenario, you wouldn’t know who you’d be compared to
anyway. You just want to know, in this scenario, was it attributed to me or not?



Results
Compared to 7 random authors’ documents in our background corpus, was your message still classified as yours?
Message successfully anonymized for this classifier.
Overall (testing) classifier score: 75.0 out of 100

Analysis of your writisg sample and message Asalysis of your | writing style
Live similarity score. 0.4 High similarity score: 1.0 o Sl eid los : il

pnal writing ssmgle: 0 920

erage

Try again?

Revise manually  'm fecling fortuitous  Message as submitted

Suggestions for synonyms provided.

pt. petersburgh, dec. 11th, 17—, you will triumph to get wind of that no disaster has

Text suggestions

pecompanied the commencement of an enterprise which you have regarded with such

o} B e N . [Click an underifined word to
evil forebodings. i arrived here yesterday, and my first job is to assure my dear sister of my i -
_ ? s —_— G rhoose from synonym

weifare and increasing confidence in the success of my undertaking. i am already far north Feplacements.

The output page will tell the user whether or not their message was attributed to them
(non anonymized) or not (anonymized). More information about the user’s writing is
also presented — simple analysis of word/sentence length and unusually frequent
words. This output screen also gives the user a chance to revise their message
before running another authorship attribution scenario.

At the bottom of the page, not only can the user work on the message they
submitted, but | also included a somewhat helpful feature that replaces some words in
your document with their synonyms. It's really dumb synonym replacement, so
sometimes it’s helpful and sometimes it's accidentally funny. This bit uses NLTK,
which I'll explain in a sec.

You may be thinking, it's a little odd that Nondescript is so self-contained, that
| chose the classifier and I'm trying to confuse it. That’s a legitimate point, but the
classifier is really a simple implementation of a Naive Bayes classifier using Scikit-
Learn. There’s nothing really special about it, and you can use the same classifier
with all kinds of writing for all kinds of purposes, not just the one we’re using here.
Still, | sometimes call this an educational tool — it's not going to guarantee
anonymity, but it is going to make you think about your writing style and ways you
could disguise it if you have to. LIVE DEMO



Synonym replacer: uses WordNet via NLTK, Natural Language Tool Kit

WordNet Interface

WordNet is just another NLTK corpus reader, and can be imported like this:
>>> from nltk.corpus import wordnet
For more compact code, we recommend:

>>> from nltk.corpus import wordnet as wn

Words

Look up a word using synsets( ); this function has an optional pos argument which lets you constrain the part of speech of the word:

>>> wn.synsets| 'dog’') # doctest: +ELLIPSIS +NORMALIZE WHITESPACE
{Synset('dog.n.01"), Synset('frump.m.01"), Synset( dog.n.03"), Synset('cad.n.01"),
Synsot( ' frank.n.02"), Synset(’'pawl.n.01"), Synset( andiron.n.0l1'), Symset('chase.v.0l")]
>>> wn.synsets( 'dog’', pos~wn.VERB)

[Synset('chase.v.01"))

The other parts of speech are xoux, ApJ and Aov. A synset is identified with a 3-part name of the form: word.pos.nn:

>>> wn.synset('dog.n.0L")
Synset( ‘dog.n.01%)

>>> print(wn.synset(’ 'dog.n.01").definition())
a member of the genus Canis (probably descended from the common wolf) that has been domesticated by man since prehistoric
>>> lea(wn.synset('dog.n.01').examplen())

1

>>> print(wn.synset( 'dog.n.01').exanples()(0))
the dog barked all night

Asia 8

which includes access to WordNet, a really amazing programmatic thesaurus



How | built it

Scikit-Learn — classification

Flask (framework) — web interface
jQuery — Ul interactivity

NLTK

WordNet — synonym replacement

WordFilter (library) — blacklist of bad words
Blog Authorship Corpus, 2004 — background corpus

Nondescript is not online (yet!) but the code is on GitHub @robincamille.

Okay, here’s what | used to build the web app. We talked about Scikit-learn, and I'm
sure some of you are familiar with Flask, which basically lets you connect your Python
scripts to a web interface. I'm using a simple HTML web form, but | snazzed it up with
some jQuery. For the synonym replacer, | used NLTK, the Natural Language Toolkit. |
also used the WordFilter library because sometimes the synonym replacer came up
with really inventive synonyms for swear words, which was amusing but ultimately
inappropriate.
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| also used Google! A lot! As | built the first version of Nondescript, | went back to look
at all the things | Googled while | was making it. So anytime | felt like a badass
Pythonista, | could bring myself back down to earth by seeing that | had to look up
how to find an average with Python, after 4 years of coding.



Preliminary results

Classifier accuracy Of the 200 times an original message was

classified, the classifier was correct 99 times
(49.5%). Of the 200 times a synonym-
replacement message was classified, the

765
75 classifier was correct 70 times (35.0%).
Though the classifier accuracy for the
495 original messages was low compared to the
] overall classifier score (but still substantially
better than random chance), the synonym-
5 replacement message was misclassified
e significantly more often compared to the
hance original message.

Overall Original message Synonym-replacement
message

Nondescript is a human-powered system. I'm currently running a user study to
see how it can help real humans. But since | don’t have the user study results
yet, | tested what | could test: whether the synonym-replacement feature (the
“I'm feeling fortuitous” tab) did anything. So | ran Nondescript on the writing for
40 authors in the Blog Corpus that were set aside. The synonym-replacement
message was misclassified significantly more often compared to the original
message. What this doesn't tell you, however, is whether the meaning is
preserved in the synonym-replacement message, or whether it's human-
readable, or how easy it is to use Nondescript. So that’s why I'm running the
user study.



Conclusions

e Stylometry can be used in authorship attribution scenarios
e [t may be possible to outwit a stylometric analysis by running your own
authorship attribution simulations to revise your message

Your to-do list:

e Try Scikit-learn
e Consider your own writing habits: how would you try
writing something anonymously?




Thank you!

Robin Camille Davis

PLibrary, John Ja»Gt_SI‘Iege' bf Criminal Justice (CUNY)

@robincamille on Twitter & GitHub
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